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Motivation

1. Mesh generation is the process of partitioning a complex
shape into a collection of simple shapes.

2. Mesh generation has many applications, in areas like
geography, computer graphics, computer-aided design, and

Turbine Flow Simulation, a demonstration.
By Shu-Jie Li & Hang Si {Meshing), July. 2018



http://pointwise.com

Structured vs. Unstructured

Structured

1. Interior node valence is constant.

ie. number of elements at each
interior node=4
2. Meshing algorithm relies on
specific topology constraints.
ie. number of sides=4

Unstructured

1. Interior node valence varies.
ie. number of elements at each
node=3,4,5...
2. Meshing algorithm applies to
arbitrary topology
ie. number of sides is arbitrary

Courtesy S. Owen, Short Course 23rd IMR
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Tet Meshing Vs. Hex Meshing

Tet Meshing

1.
2.

Fully Automated, mostly push-button
Generate millions of elements in
minutes/seconds

3. User time generally minutes/hours
4.

Can require 4-10X number of
elements to achieve same accuracy
as all-hex mesh

Tet-Locking phenomenon for linear
tet results in stiffer physics

Hex Meshing

1. Partially Automated, some Manual

2. Can require major user
effort/expertise to prepare geometry
to accept a hex mesh

3. User time to generate mesh may be
typically days/weeks/months

4. Computational methods may prefer
or require hex element

5. Preferred by most analysts for
solution accuracy

Courtesy S. Owen, Short Course 23rd IMR
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Mesh generation methods

TrifTet
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TridTet

Courtesy S. Owen
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Quadtree-Octree methods
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Advancing front
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Delaunay-based methods (with theoretical guarantees)

Triangle

Jonathon Shewchuk

guake/triangle.html

http://www-2.cs.cmu.edu/~

GHS3D

INRIA, France

Tetmesh

http://www.simulog.fr/tetmesh/




Softwares

¢ Lormmercial:

r TotEesh-GHI3D INFLA Rooguencowrs, Distene Framoe

e HMpnhSis SCOREC, RPI, Simmetrix Inc USA.

F ViaToola Mook Aerodstro, MIT, Vi e USA.

r SolidMosk, AFLR mesh generator, SimCenter, Mssissippi State Uni.

@ Open sowrge:

r EBotgen, TU Vienna.
* Gmeh Lmi, Liege & Ur, Catkaligpes de Lauvain
P GEUMMP, LInivernity al Britnk Calumbaa
F Pyramid® . UL Berkeley
v CGALoesh INRLA, Soghia-fntipalis
¥ Tothen, Wesrstrass Irstitute, Berlin —

Comprehenseee lists of meshing softwares are found in

@ Steven Owen, A Survey of Unstructured Mesh Generation Technology,
Froceedings, Tth International Meshing Roundtable, Sandia National Lakb,
pp.239-267, October 1953

@ Fobsrt Schineiders, Mesh Ganeration & Grid Genration on the Wab,
bhttp:/fwuw.robertechoeiders . de/meshpaneration/meshgenearation. bital.




The Challenges

1. CAD geometry preparation, cleaning.
2. 3d surface and volume mesh generation.
3. Mesh adaptation, anisotropic meshes.

Automation, Robustness, Efficiency, ...




Topics of this course

1. CAD geometry preparation, cleaning.
2. 3d surface and volume mesh generation.
3. Mesh adaptation, anisotropic meshes.




Outline

2. Triangular Mesh Generation
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Delaunay Triangulations




A finite point set S in the plane




A triangle of S
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the circumcircle of a triangle
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L ]

A triangle is called a Delaunay triangle if
its circumcircle contains no other vertices of S.
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A triangulation of S is called Delaunay triangulation if
all of its triangles are Delaunay triangles.




Geometric properties of Delaunay triangulations

e DT maximizes the minimum angle of traingles.

e DT maximizes the arithmetic mean of the radius of
inscribed circles of the triangles.

e DT minimizes roughness (the integral of the squared
gradients).

¢ DT minimizes the maximum containing radius (the radisu
of the smallest sphere containing the simplex).

============



Given a triangulation of S, how to know whether it is Delal




Let AB be an edge of T, it is shared by two triangles,
ABC and ABD of T.




mcircle of ABC does not

Ab is locally Delaunay if the circu
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The Delaunay Lemma: If every edge of T is locally Delaun:
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Edge flip
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CD is locally Delaunay
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Convex hulls and Delaunay triangulations

v Delaunay triangulation of 5 © KY can be abtained by first bfting every wertex
K= (s, 22,- ,Hz] In 5 into a vertex x = [x, 20, - LMz, Kgon) B0 -t by letting
the last coordinates (it " height” ) be

. 3 2 3
Xapr = [R||" =&y —ap — -+ X,

then taking the orthagonal projection of the convex hull of new point set 5" ¢ R7.
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Lawson’s Flip Algorithm [1977]

a Let 5= {pr.pz..... P} b= 2 finite set of points in B

@ Compute an mitial trangulation T of a point s&t 5.

whibe = a locally non-Delavnay edge ab £ 7
thip ab;
end while

] ]"I
e
- ¢’
"

C
e —— b

ae

d

L_.r .. i':i
L
i~
c
b
i '_d_-
d

||||||
uuuuuuuuuuuu



Lawson’s Flip Algorithm [1972, 1977]




The flip graph

¢ All triangulations of the same paint set can be transformed into each
other by a sequence of edge flips = The flip graph of any point set in
%% is connected.

Example: The Flig Gragh of the hexagon

-
/4
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The Flip Graph

w All triangulations of the same point set can be transformed into each
cther by a sequence of edge flips = The flip graph of any point set in
% is connected.
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Incremental Flipping

Given a Delaunay
Triangulation of n nodes,
How do I insert node n+1 ?




Incremental Flipping

Given a Delaunay
Triangulation of n nodes,
How do I insert node n+1 ?







Given a Delaunay
Triangulation of n nodes,
How do I insert node n+1 ?




Incremental Flip

a Let 5 = {py, Pz, ... Po b be 3 hinite set of points in B
a Let [w, %y, 2] be a sufhcwntly largs tetrabedron that contams all poents of 5.

Let T consests of anly the tetrabedron w, x,y. 2]
for : = 1 ta n da

find [p,q.r, 8] £ I that contains p;

add p, with a 1-to-4 Hip;

whibe = triangle [a, b, €] not locally Delaunay;

Hip [a, b, €];

erdwhale

endfor

O o= 0 L B L BT
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Incremental Flip [Edelsbrunner & Shah 1996]

a Let 5§ = {py, pz..... pa} be a finite w2t of points in B
a Let [w, %y, 2] be a sufhcwntly largs tetrabedron that contams all poents of 5.

1 Let Ty conssts of anly the tetrabedron [w, x, y. 2];
2 fari=1tanda

3 find [p,q,r,8] £ I that contains p;

4 add p; with a 1-to-4 fip;

Edelsbrunner, H. & Shah, N. R. Incremental topological flipping works fof
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Constrained Triangulations




Meshing a Planar Straight Line Graj




Constrained triangulations
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Constrained triangulations




Constrained triangulations
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Quality Mesh Generation




Quality of triangles

‘Good’

‘Not Good’




Quality of triangles

& mirimal angle MifNg i + &

: T T : ;
& mean ratic a7 (or s recipracal)
& aspectredius ratic inredius/ clreumeraoius

There are lots of geometric qualities ... .




Delaunay refinement [Chew 1989, Ruppert 1995]

¥ Kill bad dements by ingertion of ther circumcenter.

% Had elements: badly-shaped, oversized, #te.

||||||
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Circumcenter may lie outside of the domain

||||||
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Boundary protection

Split segments Iif its diametral circumcircle is not empty

||||||
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An input constrained triangulation
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A result of Delaunay refinement
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Robustness

Orientation

Does c lie on, to the left of, °
or to the right of ab?

256 x 256 pixel image
TR T




Filtered Exact Predicates

let F = E (X) in floating point

“filters out” the
easy cases

Code with static filtering (for entries bounded by 1):

int filtered_orientation(double px, double py,

{

double gx, double gy,
double rx, double ry)

double pgx = gqx - px, Pqy = qy — PY:
double prx = rx - px, pPry = Iy - DY;
double det = pgx * pry - pqy * prx;

const double E = 1.33282e-15;

if (det > E) return 1;
if (det < -E) return -1;

. // can’t decide => call the exact version

A

if F > error bound then 1 else
if =F > error bound then -1 else
increase precision and repeat
or switch to exact arithmetic

-

i i b i 4 I'
X R R R R K

1 ﬁl Xq xzzxt‘f‘lzxz‘ﬁzﬂl ‘3'!’52 4,

X

Shewchuk’s adaptive predicates
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Weighted Delaunay Triangulations




Weighted Points

@ Let 5 be a finite w2t of points in K, and assign

a real valued wesght wo. to each point p £ 5 to
abtamn a weighted point

|':|.=[|5-.,p;-.---.|5-...|'.l- :|.'l'|l'|'IErI! P=-_ — _|Fl:|=—;'l-'.: :
= [B+p+-Tp)— w
S
[yt o

EI
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Weighted Distances

& [he weghted distanos between two weighted points p and £ &
2
me = |lp— 2" — we — w.

e Two weighted points p and 2 is orthogonal to sach other if thesr weighted distance

1% TErO, LB .
Ip— 2| = wp + we.

' {.r'/d }-—-__x

—_ N
o ' \
[ u I * | | ¥ |
[ k 1 i i
N F \ ’>{_ ---..-__.l'




Orthocircles

# Let 5 BY x K be a finite set of weighted points. d + 1 weighted points define a
pngue comman arthasphers which 1s arthaganal to them.
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Weighted Delaunay Triangulations

a The weighted Delaunay triangulatson of § consuts of simplices with wertices in 5
such that their orthodphere 1€ empty.




Power (weighted Voronoi) diagrams




Regular Triangulations

@ Every peecewnse linesr function £ @ Q — K over a palytope () determines a polytope
projecthion, by setting:

= |.'|.1||.'."-:{ :I’[i] J - x e Q).

The arthogonal projection af the lower ervelope of P determines a regular

subdivision of Q.

& A particular choice for £ is the function f(x,] = ||x||. The obtained regular

subdivision = called the Delaunay triangulation of & [Delaunay 1934).

Courtesy of Jorg Rambaw




# Theorem Chen and Xu 2004): Denote Q[T ., F, p] = ||F — £+ |1#, where § + s the
linear nterpolation of £ based on the triangulation T of a point set 5§ © B
I¥ F is conwes, then

R f,g):=mn{Q(T.F.p) : TP}, 1< p< 0,

where T is the regular subdvision of 5.

# A Delaunay triangulation s the optimal tnangulatyan for pieceaise linear
interpalation to the functien |x|° [Rippa 19932].




The Acyclic Theorem

@ The infront behind relation: Let x be a paint and P and Q@ be two disjoent convex
objects in B°. We say that F = i front of Q with respect to x if there = 3 ray L
starting at x that first passes thraugh P and then through Q.

# Theorem [Edelsbrunner 1990]: The i front /behind relation defined far the faces
of any regular subdivision and for fxed viewpoint x in B is acyclic.

|||||||
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The Flip Graph of Regular Triangulations

% In the Imcremiental construction, it s assumed that an initial DT is given. Ctherase, there
i5 no guarantes of termination

% The flip graph of a point =2t 5: each vertex represents 2 trangulaton of 5, each edge
represents 3 flip beowesn two triangulations of 5.

The flip graah of any 20 paint st is connected |Lawson 10977]

The flip gragh of all regular trienguletions is connected [Gel'fand, Kapranos &
Felediricas JE"H].'E"E“I

Fram E*, the fig graph car be not conmected [Santas 2000, 2005]

The questian it cpen in B and B

[Fgureh P |, Pledle 5 Theses. T Badon, 300




Non-regular Triangulations

@ A subdrvision of a point s&t 5 is non-regular of it s not a regular subdmvision of 5.

@ There are many non-regular subdvisions. For example, most triangulations of eyelic
polytopes are non-regular [Rambaw 1996].

A nan-regular tnangulatean




Non-regular triangulations and Cycles

Unlike the regular triangulaitons (Acyclic Theorem [Edelsbrunner 1990]
cycles of simplices from a fixed view point.

70N

The existence of cycles in triangulations is the reason that causes
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Incremental Flip [Edelsbrunner & Shah 1996]

a Let 5§ = {py, pz..... pa} be a finite w2t of points in B
a Let [w, %y, 2] be a sufhcwntly largs tetrabedron that contams all poents of 5.

1 Let Ty conssts of anly the tetrabedron [w, x, y. 2];
2 fari=1tanda

3 find [p,q,r,8] £ I that contains p;

4 add p; with a 1-to-4 fip;

Edelsbrunner, H. & Shah, N. R. Incremental topological flipping works fof
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Detri2

- Detri2 is a C++ program and library for generating
weighted Delaunay triangulations as well as power
Voronoi diagrams for weighted point sets in 2d.

- It generates boundary constrained Delaunay
triangulations and good-quality triangular meshes for
arbitrary polygonal domains in 2d.

- It generates (isotropic and anisotropic) adapted meshes
from a user-specified sizing function.

http://www.wias-berlin.de/people/si/detri2.html



http://www.wias-berlin.de/people/si/detri2.html

Outline

3. Tetrahedral Mesh Generation
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Constrained Triangulations in 3d




Triangulations with constraints

a Given a set of constraints, edges and polygons, how to generate a tetrabedralzation
that respects them?

How to recover the edge ABY Haw to recower the rectangular face
Image from [Owen 1999




3d indecomposable polyhedra

@ A simple palyhedron & may not hawe a =trahedralization without wiang addibanal
points [Steiner poirts ™) [Lennes 1911, Schimhardt 1928].

@ The problem of deciding whether F can be tetrahedralized without Steiner points 5
M F-complete Rupper & Seidel 1992].

The Schimhardl Polyhedron [ 1825]

(A1 Jaksh Somirar [ L7WE — D383, 3 Ssiwrisad noe and 0 peomesar frsrr Earlin




Steiner Points

» A constrained tetrahedral meshing algorithm should use a small number of Steiner
points when it is possible.

A Bagemihl's Folyhedron 1, A Chazelle's polyhedron

(M = Schonhardt’s polyhedron)
‘Bagemihl 1948] [Chazelle 1984]




The existence of CDTs in 3d

s Anedge & n a PLC A s strongly Defaunay of there easts 3 crcomball of @ such
that na other wertex of A7 lies insde ar on the boundary of the ball.

@ Theorem Shewchuk 1996]. If every edge of the PLC s strangly Delaunay, then it
has a COT.

@ A Stemer COT of X ma COT of Y US, where & 15 4 set of Steiner points,

Courtesy af 1. Shewchuk




Proof of CDT Theorem (Shewchuk)

Lemmao 3 From any fived vandage poinl po N corigins ne ovcle
v .
i comseciEively sverlapeing straeply Delourey corstraining sim

rlicer.

||||||
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CDT algorithms

Giwen a 30 PLC X, a Steiner COT of A 5 generated
in thres steps:

(1) Initialization: Creating a Delauwnay
setrahedralization of the vertioss of 17

(2] Segment insertion: Splitting all non-Delaunay '-_'_-_:_: % 3 I|"5I'-
segments of X by inserting Stemer paints, until i it T
all subsegments are Delaunay; a

(3] F'ﬁll]:gﬂl‘l isertion: Generating the Stesner COT An input PLC X

af X

(1) Imitiakzation (2] Segment insertion [3) Palygon msertion

nnnnnnnnnnnn



Examples

nohna-a cognit oasty_ch
Input: 2 760 pts, 5 560 tns 2 99F pag 5 TO2 tris E 630 pas, 17, 742 tns
Added: B, 995 Steiner pts B, 400 Steiner pts 42, 408 Steiner pts
0.54 =, 5.34 seg.

CFU tirme: 057 e,
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Boundary recovery

4 |n many applications, a pre-discretized swrface mesh is used as input, and it is
reguered that this surface mesh be exactly preserved in the penerated tetrahedral
mesh, ie., na subdvision of the surface mesh is allowed.

courtesy of acelab utexas
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Classical boundary recovery methods

[1] Use sdpe/facs swaps together with intenar Steiner points insertion |[George, Hecht,
L Saltel 1991] {in TetMesh-GHSID).

[2] Insert Steiner points at where the boundaries and T intersect, delete vertices or
relocate them from the boundanes afterwards [Weatherll £ Hassan 1904

(3] Combine methods (1) and (2) George, Borouchaki, & Saltel 2003 (m
TetMesh-GHSID).

o *h

(1] [Gmrge. Heche, and Ealtel 1991] (2] Weatherill and Hassan 1994)
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3d Indecomposable Polyhedra

A polyhedron is irreducible if it cannot be cut into smaller
parts without using additional vertices.

uSzrerpearl




Knots and Links




Quality Mesh Generation in 3d




Mesh points creation

@ Advancing-front: Lo 1921, Lohner 1996, Marcwm & Weathersll 1995];
@ Sphere packing: [Shimada & Gossard 1985, Miller et al 1996];

e Octres based: [Mitchell £ Vavasis 2000];

# Longest edge subdivision: [Rivara 1907];

e Delaunay Hefmement: Chew 1969, Ruppert 1095, Shewchuk 1998,

||||||
=============



Point insertion rules

# Rube 1: Split a segment ¥ 1t & encrosched .

» Rube 2: Split a subface if it B8 encroached. However, if the new vertes would
encroaches upon a segment, repect the wertee, Split the encroached segment(s)
instead.

e Rube 3: Split a badly-shaped tetrahedron. Howewer, if the new vertex would
encroached vpon a subface or a segment, reject the vertex. Split the encroached
subiface(s) or segment(s) mstesd.




The algorithm [Ruppert and Shewchuk]

DELAUNAY REFINEMENT (X, )
S A | a PLEG g s a radius-edge ratss bownd.

= O N & Lt k3 e

Imitialize a set V' oof the vertces of A7
Initialize a Delaunay tetrahedralization I3 af
repeal:
Create 3 new pamnt by rube ¢, 7 & {12, 3},
Add v o V', update T af V',
witil {no new paint can be generated};
return I of W,




Guarantees in mesh quality and mesh size

@ (Mesh quality) Well-shaped tetrahedra, o8] < m.¥e e T.

a (Mesh size) Well-graded mesh, v —w] > =2, D= (v Theg

=1 -2

a (Mesh property) 1t is a conformmg Delaunay tetrahedral mesh.

rmun. angle = 14.5 min. angle = 20,7 min. angle = 2T
7. 802 nodes, 1.5 sec. 14, 553 nodes, 2.5 e, 54. 860 nades, 8.7 sec.
1.5 s, 2.5 g 9.7 S8

eeeeeeeeeeee



Small angles

o Observation: small anghes are “edge leagth reducers”.

I
- - »
e
I
——____..-__
- -
4
__l-—""_
—___ 1
- L e S .
. ) .

A subsegment is spihit.
Mew vertex encroaches upon
another subsegment.

Another vertex 15 Inserteq,

creating & very short edge.
Qops!

Skinny tetrahedra get split.

Small edge lengths propagate.
Subsegment split again!

uuuuuuuuuuuu



Constrained Delaunay refinement [Shewchuk and Si 2014]

Input test-64-48 let mesh, 3, 733 vertioes let mesh, 23, 72T tets
161 vertices, TO palygons (eut along the Z-axs) (eut along the Y-axis)

— - == " R TR

refined “fan blades” rernaiming skinny tetrabedra plane angles

[radius-edge ratias > 2
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The TetGen Project

@ A regearch project of WIAS Snce 2002

@ The goal = two-fald:

=t study the underlying mathematssl problems: and

P o develap rabast and sfhicient alporithms pnd aaltwegres
% It is freely available at bttp: //vew. tetgen . org.

W Lptest wersion 1.5 (reeased in Nav, 2003

W ghout 10000 dommilaads (New, 2003 - o)

= phout 20— commerdyl licenses

w H. S, TetGen, a Delaunay-based Tetrahedral Mesh Generater, ACM
Softw., 41 (2):11:1-11:36, February 2015.

Irans. Math.




An example: RR-Trent900




An example: RR-Trent900




. RR-Trent900

An example
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An example: RR-Trent900




An example: RR-Trent900

000 Px
total running time : < 6 minutes Y
memory used : ~=3.5 Gb




Outline

4. Mesh Adaptation
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Why mesh adaptation

Adapted meshes and density fields (iter. 0, 9).

Images freem Frey's IMR talk (2005)




Anisotropic mesh generation

e Many physical problems exhibit ansotropic features. Examples include particular
convection-dominated problems whose sclutions have, ¢ ., boundary layers, shocks,

edge or corner singularities.

@ When numerical methods are used to approximate these problems, it € of great
importance that the used meshes represent such features o achieve high accuracy at

2lowecomr ot

Anlsotropy why and where?

Images from Frey's IMR talk (2005)




Metric-based Anisotropic
Mesh Adaptation




Description of anisotropy using a metric tensor

B Anisotropy means the way distance and angles are distorted.
B Anisotropy can be described through a field M of metric tensors
associated with a space domain {2 C Rd, where each metric tensor

M(x) € M,x € Qisad x d symmetric positive definite matrix.
B A metric tensor M can be decomposed as

_ T cosf sinf A1 O cos@ —sinf
M = RAR _( —sin @ msﬁ) ( 0 As ) ( sinf  cosf

: T 1 - - _ 1
The unflr ballx* Mx = 1 is an oriented ellipse where 1 = vl and
Ty = ﬁ




Anisotropic distances

B Given an open curve (7 T £l the length of (' with respect to A is
defined as:

Ll(C) = | M) vithat,

{=0
where o[t : & —+ BY.# £ (0, 1) denotes a paramaterization of (7 and
v(t) = delt) /i is the tangent vector.
B The geodesic distance dad (X, ¥ ) batwesn two points a2, y © £ s
defined as the length of the (possibly non-unigue) shortest curve O that
connects x and ¥

"

(3, y) = min{ly4(C)).

nnnnnnnnnnnn



Metric-based Mesh Adaptation

B Inthe majority of works concerning anisofropic mesh generation, a
(discrete) metric tensor field .M (e.q., defined on the vertices) is used to
describe the anisctropic feature of the domain.

B Then, a uniform mesh with equal edge length with respect to the metric
tensor field .M is sought.

‘\\\\\~",,.'




BAMG - a metric-based code

BAMG: Bidimensional Anisotropic Mesh Generator

Frédérie Heelit *
draft version v1.00 deceombee 2004

The software bamg 1= a Bidimensional Anisotropic Mesh Generstor, It a part of Freelem -
software www. freefen. org/ff++

17, e =035 027, 37977 1936V




BAMG - a metric-based code

BAMG: Bidimensional Anisotropic Mesh Generator

Frédérie Heeht *

draft version v1.00 decembre 2004

. The anisotrope metric adaption schema gives the best result but
| mathematically we have not real proof.

17, £ =0.35 1127,

39T 1936V




High Dimensional Embeddings




Anisotropy through High Dimension Embedding

The ldea: Use additional dimensions to resalve the amisotropy.

[ Lauriesy of B Liwvy)

{his ewampie shows that an ansotropec mesh an B covresponds to an motrope mesh oo
B




Surface Emending in B® [Cands and Gortler 2006, Lai et al 2010]

Let I be a surface in B, Let & : M ¢ B! = E® be a map defined as,

- | X
i r __l i -~ L5
e N :
-r.- T '-l_- 3 '_| |‘ '-__... . '$|:.-'!I] — -
. I - | ) m-l-
. d £n;
L. . 1 = =

where A s a point in surface [ whose coordimates are x, v and z, respectively, and n., o,

and n; are the companents of the narmal to the surface [ at the point o
[he constant & < [0, +oc) 1S 8 parameter for capturing the anisatrooy.

|||||||



Lengths and angles in 6d

Dwfine the scalar product in B 1o be:

(A, Blw = xann + yays + zazn +5 (mewe + apwy + mew).
o, o - - -
I i

'his parameter will I:|uI:|n|:|:_ the santnbutian of the guantities | and 1T on whaole value of
(A, B)e. Since [ & [—d”,d°] and i € [—1,1], where d is the measure of the diaganal of

the bounding box af [, we need an additsonal constant te make | and I almost
comparable. We decide ta modify (A, Bl in such a way

[A, Bla = xaxy + ¥ayn + zazw + (B $)” (nowse — 0w, + mews) .

where
-EI':.- M -EI':,- M -EI';
3 :
here d., d, and & are the dimenson of the bounding bax of I

||1|=

Given two pomnts A and B that be on the surface I, we define the length of the segment

Jﬁ-us

G = lA= Bl = V(A—- B A— Be.
Given three paints A, B, C £ I we define the bd-angle ¢ as

(A— . B — Cle
| A — Clls || B — €l

By (] 1=
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Mesh adaptation (using 6d lengths and angles)

: - ; -3
# Starting from an initzal mesh of a surface [ C B

» Evaluate the lengths of the angles of the triangls in B".

s Parfarm the standard local mesh adaptation operations to make the mesh as uniform
a5 possible in R".
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Examples

f= E—Eﬂ[{m—ﬂ.EE)E—I—yE) _ E—zn[(m+n.25)2+y2)
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Y — i sin(Eﬂ'ﬂ::))
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= tanh

f(z,y)
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f = (10z° + 4°) + atan2(0.001, sin(5y) — 2z)
+(10y® + z°) + atan2(0.01, sin(5z) — 2y)




Mesh adaptation via HDE

Contrary to the classical mesh edaptation procedure, the proposed
adapiation strategy in this paper does not involve both the estimation of
an error and the construction of a metric field. In each keration of the
mesh adapiation, we use the following steps:

SOLVE=RECOVER GRADIENT—ADAPT,
and this process slops when it converges or a desired maximuwm number
of iterations is reached.
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The embedding map

Let the piecewise polyniomial solution of the PDE is wy,, we define the
following embedding: &, : B? — R” defined as

By, (x) 1= [z, ¥, suplz, ), sg=(x, ), sgylz, )",
where 5 is a user-specified paramefer s before and
ge(z, ) = [Vug (z. 9)l:,  giz, p) o= [Vuy (z, v)],

here [V (T, v) - and [Vuy, (x, y)|, are the = and  compaonents of the
gradient of the discrete solution 1y, respectively.
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An example

—pAu%-?-Vn = ()

here u = (.05, 3 = (z, -y)".

bl

L

u
u

= ]
= ()
=.()
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Example: Wave

£§ — phAy =F i L),
g =10 LT

here p = 1., f discrete Dirac function.

AR
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Outline

5. Further Topics
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Hybrid Methods
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Automatically repairing geometric issues has proven to be a complicat

self-intersections
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Surface meshing and remeshing

Figure 10.9: Anlsotropte remesnieg: From an laput triangulated geometry, the curvasare tensor
Seld s estimazed, then smoothed, and (ts umbilics are deduced (colored dots). Lines of carvazares
(Sollowing the prmoinal dirvctions] are them traced ©
ay the principal curwtures, while usual poist-sampling is use
regions). The fizal mesh s extracted by subsamplisg, and confoe
® an anisotrogne mesh, with elongsted quads aligned to the original principal directions, amxd
srangles in isotropic regons

with o loeal demsity guided
neas umbdlic points {sphercsl
ning-edge Insertion. The resalt

Courtesy P. Alleiz
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Mesh quality improvement

% Mesh improvermnent (mesh optimization) is a very important post-process m
peneratmg guahty tetrahedral meshes.
B [ypecal methods and teschniques far mesh improvement camBine wertpx smaathing,

mesh reconnection, and vertex insertion/deletion, ses [Freitag & Oliver-Gaoch
1997, Khingner & Shewchuk 2008].
8 The convergence of the typical “hill climbing” mesh mprovemnent procsss is very

hard to achieye,

‘o mush impravement needs 1o be developed.

e [ew technigues

Figure: Left: A tet mesh from corstrained Delavnay refinement. Micdle: A hoghlight of the bad
quality tets from the left mesh. Right: A hoghlight of the bad ouality tets after mesh
improsement.
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Parallel mesh generation
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The Challenges

1. CAD geometry preparation, cleaning.
2. 3d surface and volume mesh generation.
3. Mesh adaptation, anisotropic meshes.

Automation, Robustness, Efficiency, ...




Thank you for your attention
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A CAD model of turbine
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A 3d mesh of the turbine model




A numerical solution of the compressible Navier-Stoke equation

Turbine Flow Simulation, a demonstration. X
By Shu-Jie Li & Hang Si {(Meshing), July. 2018
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