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What is a(n) (adaptive) grid?

* A grid (or mesh) is a discrete representation of a given domain
and it is defined by specifying the position of discrete points in
space as well as the interconnectivity between these points

* A grid is used to represent continuous variables at fixed places
and converts Partial Differential Equations (PDEs) to systems of
Finite Difference, Finite Volume or Finite Element equations

* An adaptive grid is a grid that reflects properties of the spatial
domain and/or the PDE solution (possibly having high spatial
activity in some parts of the domain)



The importance of grid generation

(Adaptive) grid generation is a necessary tool used in the
numerical simulation of physical field phenomena and processes

* Structured grids:
e mostly with FD's
e all elements and grid points have ‘the same topology’
e ‘simple’ and efficient for not too complicated domains
e parallelization well-possible

* Unstructured grids:
e mostly with FE's
e elements and grid points can have ‘different topology’
e requires ‘book-keeping’ and more computer memory
e better suited for more complicated domains
e parallelization more difficult



Structured vs. unstructured grid generation
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Different types of adaptive grid refinement [2]

* h-refinement:
e # of grid points not constant
e adds (or deletes) grid points
e grid equations are not coupled to physical PDEs =
extra interpolation procedure needed

* p-refinement:
e varies degree of piecewise polynomials (FE's)
e often in combination with h-refinement

* r-refinement:
e # of grid points constant
e re-locates (moves) grid points
e grid equations uncoupled or coupled with physical PDE
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Structured r-refinement methods

non—uniform grid

transformation ~ grid
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An example: polar coordinates [1]

g X(&m) =ncos(¢)
y(&mn) =mnsin(€), (&) €[0,7] x[1,2]

Q¢

v
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An example: polar coordinates [2]

y
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How can adaptive moving grids help?

ur = 0.005Au — vuy — uuy,

Initial solution, uniform grid solution & moving grid solution
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What can go wrong? [1]

Consider the convection-diffusion PDE

Ou 1.0u 1. 0u
T A _ Y _ ), . .
5r € u+(x 2)6x (y 2)6y+ (x,y,t)
where
N . 1. 0u* 1.0u*
iy t) = uf —ebu’ = (x= )5+ v = 3) 5
such that

u*(x,y, t) = 3(1 — e *)(1 + tanh(100(55 — (x — 3)* = (v — 3))))

is the exact solution of the PDE model independent of ¢
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What can go wrong? [2]

For ‘some method’, we may get for e = O(1) (left) & 0 <e <1




HPRref

What can go wrong

For ‘another’ method, we may have

x(&,n,0) = &+ e fsin(2n§)sin(2mn), e = 0.1
y(&n,0) = n+ebsin(2rE)sin(2mn), t =0

(non-singularity of the mapping ~ J := xeyy, — Xpye > 0)
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Historical overview [1]
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Historical overview [2]
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Historical overview [3]

e Winslow, JCP 1967, 'Num. sol. of the quasilinear Poisson
equation ...’

e Browne & Wallick, 1969, '... automatic rezoning ...
two-dimensional Lagrangian ...’

e Barfield, JCP 1970, 'Num. method for generating orthogonal
curvilinear meshes’

e Anthes, 1970, 'Num. experiments with a two-dimensional
horizontal variable grid’

e Yanenko, Liseikin, Kovenia, ..., 1977

e Brackbill, Saltzman, 1982

e Survey paper by Thompson, 1985, ‘Dynamically-adaptive grids’
e Survey paper by Eiseman, 1987, 'Adaptive grid generation’

e Survey paper by Hawken et al, 1991, ‘Adaptive node-movement
techniques’

e Book by Knupp, Steinberg, 1993
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Historical overview [4]

e papers by Russell, Huang, Cao, ... (Vancouver, Kansas)

e papers by Miller, Baines, Carlson, Jimack, ... (Berkeley, Reading)
e papers by Liao, Liu, Anderson, ... (Arlington, Texas)

e papers by Blom, Verwer, Zegeling, ... (Amsterdam, Utrecht)

e papers by lvanova, Degtyarev, ... (Keldysh institute, Moscow)

e papers by Tao Tang and co-authors (Hong Kong, Beijing)

e papers by Mackenzie, Sloan, Beckett, ... (Strathclyde)

e papers by Williams, Stockie, Budd, ... (Vancouver, Bath)

e many others...!
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Literature [1]
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Literature [2]

Weizhang Huang * Robert D. Russell

Adaptive Moving Mesh
Methods

@ Springer

Book, 2011
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Literature [3]

Go with the Flow

Moving meshes and solution monitoring
for compressible flow simulation

Arthur van Dam

Utrecht, 2009
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Budd, C., Huang, W., & Russell, R. (2009). Adaptivity with moving grids. Acta Numerica, 18, 111-241.

Acta Numerica, 2009



Transformation vs. grid [1]

’non—uniform grid in x-direction ~ uniform grid in §—direction‘

‘transformation nonsingular‘(:)‘Jacobian £ 0‘

~ ‘ grid remains undistorted ‘

~ ‘ computations do not break down ‘




Transformation vs. grid [2]

, with £ € [0,1] and x € [0, 1] has Jacobian

x(¢) = €
:%—2§>0for§>0

J

constants A, B, C, D can be found with

x(€) = A+ BE+ CE2+ DE3 and x(0) = 0,x(1) = 1,x(3) = 3 but
also ¢ ( ) = 0. This gives a singular transformation (grid crossing
in the non-uniform grid).




Transformation vs. grid [3]

consider the PDE u; = —f(u)uyx + y(u). The ‘Method of
Characteristics’ (MoC) defines (implicitly) a transformation
(x(&,0),t = 6), = grid, that must satisfy g—g = B(u), % = y(u).

A special case with S(u) = u, v(u) =0, inviscid Burgers'
equation, gives %2 = 0 at t = t;+ (transformation becomes

singular ~ characteristics of PDE intersect ~ a shock develops)

t

t=t_c




Transformation vs. grid [4]

Example 4:

consider the PDE u; = —2m(y — 1)ux + 27(x — 3)u,. MoC defines

a transformation (x(&,1,0),y(&,n,0),t = 0) that must satisfy
; 5 )
% =2rly—}), 5 = 2n(x— 1), =0

= (x — 2)? + (v — 3)? = 2 (circles around (3, 1))

The grid follows these trajectories = grid distortion after some
time (computations break down)

y

'
e

HOW TO CHOOSE THE TRANSFORMATION (GRID)??



A simple boundary value problem [0]

Consider the following BV-model:

’euxxf ue =0, uw(0)=0, u(l)= 1‘

with exact solution




A simple boundary value problem [1a]

Numerical approximation (idea 1):

Uil — 2u; + uj_ Uiyl — Uj_ .
EI+1 i 117 i+1 IlZO,I:].ZN*].

Ax? 2Ax
(£p0) -1
. — —_Ue . A _ 1
The exact num. sol.: u; = (]_%T (Pe = 7:, Ax = N)
1-Pe

* for N < i ~» Ps > 1: numerical solution oscillates

* for N > 2% ~+ 0 < P, < 1: monotone numerical values

0<e<x1l= N>>1 (inefficiency of numerical process...)‘

x The numerical error behaves like: O(Ax?) = O(#)



A simple boundary value problem [1b]

Numerical approximation (idea 1):




A simple boundary value problem [2a]

Numerical approximation (idea 2):

Uiy1 —2ui +uji—1  ui—u
(Ax)? Ax

=l _0,i=1:N-1

(1+P) —1
(1+ PN -1
* 14 Pe > 1= ujy1 > u; Vi (monotone numerical solution)
* Unfortunately, the error behaves as: O(Ax) = O(+)

* Also, extra numerical damping (" diffusion”) is introduced:

The exact num. sol: |u; =

Ui —uj—1 _ Uigr — Uil Axuipy —2ui 4 ujg

Ax 2AXx 2 Ax?




A simple boundary value problem [2b]

Numerical approximation (idea 2):




A simple boundary value problem [33]

Numerical approximation (idea 3):

define v(§) := u(x(§)) and a transformation x — & € [0, 1]; then
the BV-problem becomes

€ VegXe = VeXeg, Ve 0
[ 3 ] =
Xg X£ Xg

Suppose that v(£) = £ and assume x¢ > 0, then

€Xeg +X£2 =0, x(0)=0, x(1)=1

with exact solution x*(€) = € In(¢(er — 1) + 1)



A simple boundary value problem [3b]

Numerical approximation (idea 3):

non-uniform (adaptive) grid

g uniform grid 1 0 T T (>X



A simple boundary value problem [3¢]

Numerical approximation (idea 3):

1. this particular mapping satisfies , since uy = ;f and

vi)=€¢=ve =1

2. Xg ~ — — :
%6 ™ grid point concentration

3. from 1. & 2.: where u, large ~~ x¢ small, i.e., grid points are
concentrated in boundary layer

4. could use this principle for other models as well(!):

where w > 0 is a ‘monitor’ function



Adaptive grids in terms of coordinate transformations [1]

solution of ODE or PDE U ’steep’ solution ’mild’ solution

non-uniform (adaptive) grid X o uniform grid é

uniform grid N>>1 N>s1 Nss1




oe

Adaptive grids in terms of coordinate transformations [2]

u(x) “
at some point
of time t=6
——
non—uniform mesh X
‘ x(.0)
U




The equidistribution principle [1]

What is equidistribution?

We want to "equally distribute” a positive definite weight or
monitor function w on a non-uniform grid

Ideally: w ~ some measure of the numerical error

choose or compute a grid
XL =Xo < X1 <Xo<..<XN-1<XN=XR

such that the contribution to the ‘error’ from each subinterval
(xi—1, X;) is the same



Equid
.

The equidistribution principle [2]

The basic principle reads:

Ax;wi=c, i=0,..,.N—-1

with xp = X1, Xy = XR, AXj = Xj11 — X;
which is a discrete version of (applying the midpoint rule):

Xi+1
/ wdx=c¢, i=0,...N-1
X

i

The constant c is determined from:

XR X1 X2 XN
/ wdx = / wdx—f—/ wdx+...+/ wdx = c+c+...4c (N times),
X X

X0 X1 N—1

giving c = &; f:LR wdx.



The equidistribution principle [3]

We obtain:

Xi+1 1 XR
/ wdx:—/ wdx, i=0,...N—1,
X N Ji,

1

which means that the monitor function w is equally distributed
over all subintervals.

The main idea behind this principle:

grid cells Ax; are small where w; is large, and vice versa, since
their product is constant.




The equidistribution principle [4]

The discrete formulation:

AX,‘ wji==¢C

can also be interpreted as an approximation to the problem

’xguzc, 0<§<1‘

or, taking the &-derivative, to the boundary-value problem

(wxe)e =0, x(0)=x1, x(1)=xr




The equidistribution principle [5]

. dx _ 1 .
since 75 = g, we find

dx
2

i =Ccw, XL <X<XRg, S(XL):O7 g(XR):]'

We then obtain

1=1-0=¢&(xg) —&(x) = e dx=c /XRde,

5 dx ,

— 1 @ _ __w
sothat c = wx— = ¢ = R om
L, ML



The equidistribution principle [6]

Integration of
d& w

dx f;ZR wdx

defines the inverse transformation

5 [ wdx

f(X) = X —dx = %

1 XLR wdx foR wdx
Note that 1
Ex=—
Xe

represents the ‘grid point density’ of the transformation



The equidistribution principle [7]

Regularity of the transformation

dx XR — XL

d_fw - fol wdf_

For w >0 = ¢ > 0, we have & Fi >0(ofcourse xg —xi > 0). The

Jacobian of the transformation is given by g > 0=
transformation is non-singular.

In terms of the grid points, Axjw; = ¢ > 0 = Ax; > 0: the grid
points do not cross!



The equidistribution principle [8]

Variational formulation:

Consider the ‘grid-energy’

1
5:/ wxgdﬁ
0

Minimizing this functional via the Euler-Lagrange equation:

d dF, OF _ . B _ 2
32 (o)~ ax — 0 vith F=Flxx) =w(© gives:
d d  dx

which is equivalent to the differential formulation (BV-problem)



The equidistribution principle [9]

The ‘grid-energy’

can be taken to represent the energy of a system of springs with
spring constants w spanning each interval.

The non-uniform grid point distribution resulting from the
equidistribution principle thus represents the equilibrium state of
the spring system, i.e., the state of minimum energy.

- ‘springs’
“forces’ A= g .
K ‘points of mass’
2 %

x(i-1)  x(i) X(i+1) X(i+2)
X 7

mesh points



The equidistribution principle [10]

How to choose w? (choice 1)

W = Uy :>X§w:X§uX:X§i—§:V§:C

The grid points x; adjust in such a way that the same change in
the solution u occurs over each grid interval (xj_1, x;);
disadvantage: (ux L 0: Ax; — o0)




The equidistribution principle [11]

How to choose w? (choice 2)

w = +/1+ u2: an increment of arclength ds on the solution curve
u(x) is given by ds? = dx? + du® = (1 + u2)dx?® =

W = Sy :xssX:x@i—i:%:c. Note: uy | 0 = Ax; — %

The grid point distribution is now such that the same increment in
arclength in the solution occurs over each subinterval




Can we expect problems with this approach?

big jumps in grid distribution... ‘instabilities’ in time-direction...

x
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