Moving Adaptive Grids (part 1)

P. A. Zegeling

Mathematical Institute
The Netherlands

Winterschool December 1-2, 2018, Moscow

Contents of Part 1

Grids vs. transformations:

- Different types of grids
- Benefits & possible problems
- Brief history
- Equidistribution principle

What is a(n) (adaptive) grid?

- * A grid (or mesh) is a discrete representation of a given domain and it is defined by specifying the position of discrete points in space as well as the interconnectivity between these points
- * A grid is used to represent continuous variables at fixed places and converts Partial Differential Equations (PDEs) to systems of Finite Difference, Finite Volume or Finite Element equations
- \star An adaptive grid is a grid that reflects properties of the spatial domain and/or the PDE solution (possibly having high spatial activity in some parts of the domain)

The importance of grid generation

(Adaptive) grid generation is a necessary tool used in the numerical simulation of physical field phenomena and processes

* Structured grids:

- mostly with FD's
- all elements and grid points have 'the same topology'
- 'simple' and efficient for not too complicated domains
- parallelization well-possible

* <u>Unstructured</u> grids:

- mostly with FE's
- elements and grid points can have 'different topology'
- requires 'book-keeping' and more computer memory
- better suited for more complicated domains
- parallelization more difficult

Structured vs. unstructured grid generation

Different types of adaptive grid refinement [1]

Different types of adaptive grid refinement [2]

- * h-refinement:
 - # of grid points *not* constant
 - adds (or deletes) grid points
 - grid equations are not coupled to physical PDEs ⇒ extra interpolation procedure needed
- * p-refinement:
 - varies degree of piecewise polynomials (FE's)
 - often in combination with h-refinement
- * r-refinement:
 - # of grid points constant
 - re-locates (moves) grid points
 - grid equations uncoupled or coupled with physical PDE

Different types of *r*-refinement

Structured *r*-refinement methods

transformation \sim grid

An example: polar coordinates [1]

$$\{ \begin{array}{l} x(\xi,\eta) = \eta \cos(\xi) \\ y(\xi,\eta) = \eta \sin(\xi), \quad (\xi,\eta) \in [0,\pi] \times [1,2] \end{array}$$

An example: polar coordinates [2]

How can adaptive moving grids help?

$$u_t = 0.005\Delta u - uu_x - uu_y$$

Initial solution, uniform grid solution & moving grid solution

What can go wrong? [1]

Consider the convection-diffusion PDE

$$\frac{\partial u}{\partial t} = \epsilon \Delta u + \left(x - \frac{1}{2}\right) \frac{\partial u}{\partial x} - \left(y - \frac{1}{2}\right) \frac{\partial u}{\partial y} + f(x, y, t)$$

where

$$f(x,y,t) = u_t^* - \epsilon \Delta u^* - (x - \frac{1}{2}) \frac{\partial u^*}{\partial x} + (y - \frac{1}{2}) \frac{\partial u^*}{\partial y}$$

such that

$$u^*(x,y,t) = \frac{1}{2}(1-e^{-t})(1+\tanh(100(\frac{1}{16}-(x-\frac{1}{2})^2-(y-\frac{1}{2})^2)))$$

is the exact solution of the PDE model independent of ϵ

What can go wrong? [2]

For 'some method', we may get for $\epsilon = \mathcal{O}(1)$ (left) & $0 < \epsilon \ll 1$

What can go wrong? [3]

For 'another' method, we may have

$$x(\xi, \eta, \theta) = \xi + \epsilon \theta \sin(2\pi\xi) \sin(2\pi\eta), \epsilon = 0.1$$

$$y(\xi, \eta, \theta) = \eta + \epsilon \theta \sin(2\pi\xi) \sin(2\pi\eta), t = \theta$$

(non-singularity of the mapping $\sim \mathcal{J} := x_{\xi} y_{\eta} - x_{\eta} y_{\xi} > 0$)

Historical overview [1]

Historical overview [2]

Historical overview [3]

- Winslow, JCP 1967, 'Num. sol. of the quasilinear Poisson equation ...'
- Browne & Wallick, 1969, '... automatic rezoning ... two-dimensional Lagrangian ...'
- Barfield, JCP 1970, 'Num. method for generating orthogonal curvilinear meshes'
- Anthes, 1970, 'Num. experiments with a two-dimensional horizontal variable grid'
- Yanenko, Liseikin, Kovenia, ..., 1977
- Brackbill, Saltzman, 1982
- Survey paper by Thompson, 1985, 'Dynamically-adaptive grids'
- Survey paper by Eiseman, 1987, 'Adaptive grid generation'
- Survey paper by Hawken et al, 1991, 'Adaptive node-movement techniques'
- Book by Knupp, Steinberg, 1993

Historical overview [4]

- papers by Russell, Huang, Cao, ... (Vancouver, Kansas)
- papers by Miller, Baines, Carlson, Jimack, ... (Berkeley, Reading)
- papers by Liao, Liu, Anderson, ... (Arlington, Texas)
- papers by Blom, Verwer, Zegeling, ... (Amsterdam, Utrecht)
- papers by Ivanova, Degtyarev, ... (Keldysh institute, Moscow)
- papers by Tao Tang and co-authors (Hong Kong, Beijing)
- papers by Mackenzie, Sloan, Beckett, ... (Strathclyde)
- papers by Williams, Stockie, Budd, ... (Vancouver, Bath)
- many others...!
- •

Literature [1]

Literature [2]

Weizhang Huang • Robert D. Russell

Adaptive Moving Mesh Methods

 $\underline{\underline{\mathscr{D}}}$ Springer

Book, 2011

Literature [3]

Go with the Flow

Moving meshes and solution monitoring for compressible flow simulation

Arthur van Dam

Utrecht, 2009

Literature [4]

Literature [5]

Budd, C., Huang, W., & Russell, R. (2009). Adaptivity with moving grids. *Acta Numerica*, 18, 111-241.

Acta Numerica, 2009

Transformation vs. grid [1]

non-uniform grid in x-direction \sim uniform grid in ξ -direction

transformation nonsingular \Leftrightarrow Jacobian $\neq 0$

 \sim grid remains undistorted

 \sim computations do not break down

Transformation vs. grid [2]

Example 1:

$$x(\xi) = \xi^2$$
, with $\xi \in [0, 1]$ and $x \in [0, 1]$ has Jacobian $\mathcal{J} = \frac{dx}{d\xi} = 2\xi > 0$ for $\xi > 0$.

Example 2:

constants A, B, C, D can be found with $x(\xi) = A + B\xi + C\xi^2 + D\xi^3$ and $x(0) = 0, x(1) = 1, x(\frac{1}{2}) = \frac{1}{2}$ but also $\frac{dx}{d\xi}(\frac{1}{2}) = 0$. This gives a singular transformation (grid crossing in the non-uniform grid).

Transformation vs. grid [3]

Example 3:

consider the PDE $u_t = -\beta(u)u_x + \gamma(u)$. The 'Method of Characteristics' (MoC) defines (implicitly) a transformation $(x(\xi,\theta),t=\theta), \Rightarrow \text{grid}$, that must satisfy $\frac{\partial x}{\partial \theta} = \beta(u), \quad \frac{\partial u}{\partial \theta} = \gamma(u)$.

A special case with $\beta(u)=u,\ \gamma(u)=0$, inviscid Burgers' equation, gives $\frac{\partial x}{\partial \xi}=0$ at $t=t_{crit}$ (transformation becomes singular \sim characteristics of PDE intersect \sim a shock develops)

Transformation vs. grid [4]

Example 4:

consider the PDE $u_t = -2\pi(y - \frac{1}{2})u_x + 2\pi(x - \frac{1}{2})u_y$. MoC defines a transformation $(x(\xi, \eta, \theta), y(\xi, \eta, \theta), t = \theta)$ that must satisfy $\frac{\partial x}{\partial \theta} = 2\pi(y - \frac{1}{2}), \quad \frac{\partial y}{\partial \theta} = -2\pi(x - \frac{1}{2}), \quad \frac{\partial u}{\partial \theta} = 0.$

$$\Rightarrow (x-\frac{1}{2})^2+(y-\frac{1}{2})^2=c^2$$
 (circles around $(\frac{1}{2},\frac{1}{2})$)

The grid follows these trajectories \Rightarrow grid distortion after some time (computations break down)

A simple boundary value problem [0]

Consider the following BV-model:

$$\left| \epsilon u_{xx} - u_x = 0, \ u(0) = 0, \ u(1) = 1 \right|$$

with exact solution
$$u^*(x) = \frac{e^{\frac{x}{\epsilon}} - 1}{e^{\frac{1}{\epsilon}} - 1}$$

A simple boundary value problem [1a]

Numerical approximation (idea 1):

$$\epsilon \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} - \frac{u_{i+1} - u_{i-1}}{2\Delta x} = 0, \ i = 1 : N - 1$$

The exact num. sol.:
$$u_i = \frac{\left(\frac{1+P_e}{1-P_e}\right)^i - 1}{\left(\frac{1+P_e}{1-P_e}\right)^N - 1} \left(P_e := \frac{\Delta x}{2\epsilon}, \ \Delta x = \frac{1}{N}\right)$$

- \star for $N < \frac{1}{2\epsilon} \leadsto P_e > 1$: numerical solution *oscillates* \star for $N > \frac{1}{2\epsilon} \leadsto 0 < P_e < 1$: *monotone* numerical values

$$0 < \epsilon \ll 1 \Longrightarrow N \ggg 1$$
 (inefficiency of numerical process...)

* The numerical error behaves like: $\mathcal{O}(\Delta x^2) = \mathcal{O}(\frac{1}{M^2})$

A simple boundary value problem [1b]

Numerical approximation (idea 1):

A simple boundary value problem [2a]

Numerical approximation (idea 2):

$$\epsilon \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2} - \frac{u_i - u_{i-1}}{\Delta x} = 0, \ i = 1 : N - 1$$

The exact num. sol:
$$u_i = \frac{(1 + P_e)^i - 1}{(1 + P_e)^N - 1}$$

- $\star 1 + P_e > 1 \Longrightarrow u_{i+1} > u_i \ \forall i \ (monotone \ numerical \ solution)$
- * Unfortunately, the error behaves as: $\mathcal{O}(\Delta x) = \mathcal{O}(\frac{1}{N})$
- * Also, extra numerical damping ("diffusion") is introduced:

$$\frac{u_i - u_{i-1}}{\Delta x} = \frac{u_{i+1} - u_{i-1}}{2\Delta x} - \frac{\Delta x}{2} \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2}$$

A simple boundary value problem [2b]

Numerical approximation (idea 2):

A simple boundary value problem [3a]

Numerical approximation (idea 3):

define $v(\xi):=u(x(\xi))$ and a transformation $x\longmapsto \xi\in [0,1];$ then the BV-problem becomes

$$\frac{\epsilon}{x_{\xi}} \left[\frac{v_{\xi\xi}x_{\xi} - v_{\xi}x_{\xi\xi}}{x_{\xi}^2} \right] - \frac{v_{\xi}}{x_{\xi}} = 0$$

Suppose that $v(\xi) = \xi$ and assume $x_{\xi} > 0$, then

$$\epsilon x_{\xi\xi} + x_{\xi}^2 = 0$$
, $x(0) = 0$, $x(1) = 1$

with exact solution $x^*(\xi) = \epsilon \ln(\xi(e^{\frac{1}{\epsilon}} - 1) + 1)$

A simple boundary value problem [3b]

Numerical approximation (idea 3):

A simple boundary value problem [3c]

Numerical approximation (idea 3):

- 1. this particular mapping satisfies $x_{\xi}u_{x}=1$, since $u_{x}=\frac{v_{\xi}}{x_{\xi}}$ and $v(\xi)=\xi \Rightarrow v_{\xi}=1$.
- 2. $x_{\xi} \sim \frac{1}{\text{grid point concentration}}$
- 3. from 1. & 2.: where u_x large $\rightsquigarrow x_\xi$ small, i.e., grid points are concentrated in boundary layer
- 4. could use this principle for other models as well(!):

$$x_{\xi} \omega = 1$$

where $\omega > 0$ is a 'monitor' function

Adaptive grids in terms of coordinate transformations [1]

Adaptive grids in terms of coordinate transformations [2]

The equidistribution principle [1]

What is equidistribution?

We want to "equally distribute" a positive definite weight or monitor function ω on a non-uniform grid

Ideally: $\omega \sim$ some measure of the numerical error

choose or compute a grid

$$x_L = x_0 < x_1 < x_2 < ... < x_{N-1} < x_N = x_R$$

such that the contribution to the 'error' from each subinterval (x_{i-1}, x_i) is the same

The equidistribution principle [2]

The basic principle reads:

$$\Delta x_i \ \omega_i = c, \quad i = 0, ..., N-1$$

with $x_0 = x_L$, $x_N = x_R$, $\Delta x_i := x_{i+1} - x_i$ which is a discrete version of (applying the midpoint rule):

$$\int_{x_i}^{x_{i+1}} \omega dx = c, \quad i = 0, ..., N-1$$

The constant *c* is determined from:

$$\int_{x_L}^{x_R} \omega dx = \int_{x_0}^{x_1} \omega dx + \int_{x_1}^{x_2} \omega dx + \dots + \int_{x_{N-1}}^{x_N} \omega dx = c + c + \dots + c \text{ (N times)},$$

giving
$$c = \frac{1}{N} \int_{x_I}^{x_R} \omega dx$$
.

The equidistribution principle [3]

We obtain:

$$\int_{x_{i}}^{x_{i+1}} \omega dx = \frac{1}{N} \int_{x_{i}}^{x_{R}} \omega dx, \quad i = 0, ..., N - 1,$$

which means that the monitor function ω is equally distributed over all subintervals.

The main idea behind this principle:

grid cells Δx_i are small where ω_i is large, and vice versa, *since* their product is constant.

The equidistribution principle [4]

The discrete formulation:

$$\Delta x_i \ \omega_i = c$$

can also be interpreted as an approximation to the problem

$$x_{\xi}\omega=c, \quad 0<\xi<1$$

or, taking the ξ -derivative, to the boundary-value problem

$$(\omega x_{\xi})_{\xi} = 0, \quad x(0) = x_{L}, \quad x(1) = x_{R}$$

The equidistribution principle [5]

Note that

since
$$\frac{dx}{d\xi} = \frac{1}{\frac{d\xi}{dx}}$$
, we find

$$\frac{d\xi}{dx} = c \ \omega, \ \ x_L < x < x_R, \ \xi(x_L) = 0, \ \xi(x_R) = 1$$

We then obtain

$$1 = 1 - 0 = \xi(x_R) - \xi(x_L) = \int_{x_L}^{x_R} \frac{d\xi}{dx} \ dx = c \int_{x_L}^{x_R} \omega dx,$$

so that
$$c=rac{1}{\int_{x_I}^{x_R}\omega dx} \Rightarrow rac{d\xi}{dx} = rac{\omega}{\int_{x_I}^{x_R}\omega dx}$$

The equidistribution principle [6]

Integration of

$$\frac{d\xi}{dx} = \frac{\omega}{\int_{x_I}^{x_R} \omega d\bar{x}}$$

defines the inverse transformation

$$\xi(x) = \int_{x_L}^{x} \frac{\omega}{\int_{x_I}^{x_R} \omega d\bar{x}} d\bar{x} = \frac{\int_{x_L}^{x} \omega d\bar{x}}{\int_{x_I}^{x_R} \omega d\bar{x}}$$

Note that

$$\xi_{x} = \frac{1}{x_{\epsilon}}$$

represents the 'grid point density' of the transformation

The equidistribution principle [7]

Regularity of the transformation

$$\frac{dx}{d\xi}\omega = c = \frac{x_R - x_L}{\int_0^1 \omega d\bar{\xi}}$$

For $\omega>0\Rightarrow c>0$, we have $\frac{dx}{d\xi}>0$ (of course, $x_R-x_L>0$). The Jacobian of the transformation is given by $\frac{dx}{d\xi}>0\Rightarrow$ transformation is non-singular.

In terms of the grid points, $\Delta x_i \omega_i = c > 0 \Rightarrow \Delta x_i > 0$: the grid points do not cross!

The equidistribution principle [8]

Variational formulation:

Consider the 'grid-energy'

$$\mathcal{E} = \int_0^1 \omega x_{\xi}^2 d\xi$$

Minimizing this functional via the Euler-Lagrange equation:

$$\frac{d}{d\xi}(\frac{\partial \mathcal{F}}{\partial x_{\xi}}) - \frac{\partial \mathcal{F}}{\partial x} = 0 \quad \text{with} \quad \mathcal{F} = \mathcal{F}(x, x_{\xi}) = \omega(\xi)x_{\xi}^{2} \quad \text{gives:}$$

$$\frac{d}{d\xi}(2\omega x_{\xi}) - 0 = 0 \Leftrightarrow \boxed{\frac{d}{d\xi}[\omega \frac{dx}{d\xi}] = 0}$$

which is equivalent to the differential formulation (BV-problem)

The equidistribution principle [9]

The 'grid-energy'

can be taken to represent the energy of a system of springs with spring constants ω spanning each interval.

The non-uniform grid point distribution resulting from the equidistribution principle thus represents the equilibrium state of the spring system, i.e., the state of minimum energy.

The equidistribution principle [10]

How to choose ω ? (choice 1)

$$\omega = u_X \Rightarrow x_{\xi}\omega = x_{\xi}u_X = x_{\xi}\frac{v_{\xi}}{x_{\varepsilon}} = v_{\xi} = c$$

The grid points x_i adjust in such a way that the same change in the solution u occurs over each grid interval (x_{i-1}, x_i) ; disadvantage: $(u_x \downarrow 0: \Delta x_i \rightarrow \infty)$

The equidistribution principle [11]

How to choose ω ? (choice 2)

$$\omega = \sqrt{1 + u_x^2}$$
: an increment of arclength ds on the solution curve $u(x)$ is given by $ds^2 = dx^2 + du^2 = (1 + u_x^2)dx^2 \Rightarrow \omega = s_x \Rightarrow x_\xi s_x = x_\xi \frac{s_\xi}{x_c} = s_\xi = c$. Note: $u_x \downarrow 0 \Rightarrow \Delta x_i \rightarrow \frac{1}{N}$

The grid point distribution is now such that the same increment in arclength in the solution occurs over each subinterval

Can we expect problems with this approach?

X