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Contents of part 2

Smoothed equidistribution and applications:

e Grid distributions, local truncation error & (un)stable grid motion
e (local) quasi-uniformity
e Smoothness in space and time

e 1D applications from chemistry, hydrology,
magneto-hydrodynamics, ...
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Adaptive grids in terms of coordinate transformations

solution of ODE or PDE u ’steep’ solution ’mild’ solution
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non-uniform (adaptive) grid X uniform grid €

uniform grid N>>1 N>s1 Nx51




Equid

Different types of mappings based moving adaptive grids

t

fixed uniform grid

fixed non-uniform grid

x=& t=0 t x=f€) t=0
X X
moving non-uniform grid moving adaptive grid
x=f€)+ct t=0 t

fixed moving grid
x=L+ct  t=0

fully adaptive grid
x=fE.0) t=gEo)




Recall: the equidistribution principle [1]

The equidistribution principle in 1D is:

(wxe)e =0, x(0)=x;, x(1)=x

An explicit formula for the inverse transformation can be derived:

) —£(x) = [ & dx:c/xrwdxzsgxzﬁf(x)
X w dx




Equid
°

Recall: equidistribution principle [2]

Discrete formulation:

Ax; wj = constant = Ax; >0 Vi ~ J :=x >0

(1D transformation is non-singular, if w > 0)

The monitor function w is equally distributed over all subintervals

Xj+1 1
/ wdi:—/ w dx
x N Q,

i




Recall: the equidistribution principle [3]

1) w = ux ~ ug = constant
(ux L 0: Ax; — o0)

) w=+/1T+u2 ds®=dx®+di? = (1+u2)dx?
= w =5, ~ 5 = constant (ux | 0: Ax; — 1)
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Burgers' equation

[0,1]

ou ou 0%u
E + Ua = 0005@, X €




A linear hyperbolic PDE [1]; smoothed equidistribution

: - X = —Xx
method of characteristics: { Q=0




A linear hyperbolic PDE [2]; smoothed equidistribution

| N [Jlellos: Un. t=5]Ad. t=5] Un. t =10 | Ad. t =10 |

100 0.669504 0.050343 | 0.993392 0.144466
200 0.506568 0.018615 | 0.988101 0.040614
400 0.322038 0.008071 | 0.978686 0.017416
800 0.161977 0.003626 | 0.962241 0.008049
1600 0.060010 0.001640 | 0.934068 0.003819

N=200

UNIFORM (red)
ADAPTIVE (blue)
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Another PDE example [1]; smooth vs. unsmooth grid

ou ou
ot + 4cos(47rt)& =0

* An exact solution of this hyperbolic PDE is

u*(x, t) = sint0%(7(x — %sin(47rt)))

* It describes an extremely sharp pulse that moves periodically in
the time direction, from left to right and backwards again through
the spatial domain



Another PDE example [2]; smooth vs. unsmooth grid

N=100, p=1000, tol=10"%, 1=107®
1.2 T T T T T T

EXACT SOLUTION

0=2 (ADAPTIVE + SMOOTHING) B

0=0

/ (ADAPTIVE, NO SMOOTHING) q

0.8

UNIFORM GRID

U(X,0.4)
o
»
T

-0.4 1 1 1 1 1 1 1 1 I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

X (zoomed in)
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Another PDE example [3]; smooth vs. unsmooth grid
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Another PDE example [4]; smooth vs. unsmooth grid

The maximum error at t = 0.4:

N uniform | unsmooth equid. | smooth equid.

50 | 0.721312 0.624699 0.387192
100 | 0.577044 0.432729 0.116723
200 | 0.509914 0.274196 0.033135
400 | 0.327693 0.142711 0.025296
800 | 0.109807 0.072737 0.017410
1600 | 0.027250 xRk 0.011549




So, what can still go wrong (without smoothing)??7?

big jumps in grid distribution... ‘instabilities’ in time-direction...

=
o

x



Smoothness
°

Can we quantify these two aspects?

Yes, in terms of
e Jocal truncation errors on non-uniform grids
and

e unsmoothness of a time-dependent grid based on pure
equidistribution.



Smoothness
°

The grid size ratio and the truncation error [1]

Define the ‘grid size ratio’ (‘local stretching factor’):

xi—xi-1 _ Axi1 _ q

o= :
Xit1 — Xi Ax; p
The truncation error T for the central finite difference

approximation uy ; ~ % is then given by

_ ) 3+q° )

= _%UXX,I - %UXXX,/ T oo

= — 32U i(1—r)Ax; — %Uxxx,i(l —r+r?)Ax? + ..
2

= %(3)(55’,-%%,- + XZUXXXJ) + O(A?)

201 Xeg,i
= AXi (5 ngi Uxx,i P EUXXX,I') ar HOT

2q2




Smoothness
°

The grid size ratio and the truncation error [2]

We see that for r = 1 (a uniform grid) we have a second-order
approximation:
NAE2
= *Tfuxxx,i 4 O(A£4)

For the non-uniform grid, r £ 1, the approximation is of second
order, if r =1+ O(Ax;).
Since

_ XAl 3DExee

s
+HOT. =1 Ax 8 L H.OT.
Xe iAE + FAExee ;

)
Xei

we can conclude that % =0Q1) e r=1+0(Ax).
&,



Smoothness
°

The grid size ratio and the truncation error [3]

If the ratio % is too big, then r # O(1) and this influences the

order of the truncation error.
Grids with r = 1+ O(Ax;) are called ‘quasi-uniform’.

Such grids (in terms of the transformation: );“T“ = 0(1)) are

&0
‘smooth’ enough and will not change greatly between adjacent
intervals.

How to adjust the equidistribution principle to guarantee this, we
will see further on.



Smoothness
.

Equidistribution and instabilities in time [1]

If we differentiate the equidistribution relation

x;(t) i XR i
/XL wdx:N wdx = Nw(t), i=1,..,N

J X

with respect to time t we obtain

w(x;j, t)x; + . Ot(X t)dx :Nw(t), i=1,...,N.

Introducing small perturbations dx; on the grid points x; and using

Taylor expansions for w(x; + dx;, t) and fX’J”SX" %—“t’dx we get

i Ow ow

T dx+ —xi+H.O.T. = N(t)

(09}
+—0x;X; i E)OX+
xixi+w(x;j, t)0x /. ot 5

0
15)

w(x,-, t)).(,'



Smoothness
°

Equidistribution and instabilities in time [2]

After linearization follows

ow

E(SX; =0.

w(x;j, t)ox; + gidx,-i(,-+

This is equivalent with %[w(x,-(t), t)ox;| = 0 and integrating
once gives

w(x;(t), t)ox;(t) = CONSTANT = w(x;(0),0)dx;(0)

and therefore dx;(t) = w((x"(((g’(t))) dx;(0). From this expression we

see that, if (( ((tg t)) becomes > 1, the adaptive grid in
eqwdlstrlbutlon may become unstable. This may be prevented by
to the equidistribution principle.




Smoothness
.

Smoothed equidistribution in space and time [1]

An important inequality is therefore

1

—<r<K, K=0(1

g SrSK K=0()
Re-write the EP Ax;jw; = ¢(t) in terms of ‘point concentrations’
iy c= Aix,
Define

N
C&":ij(io-j_l)‘iiﬂ’ c>0, w>0
Jj=0

and replace the EP by



Smoothness
°

Smoothed equidistribution in space and time [2]

[the magnitude of w does not play a role at all! Note that, if
o = O(1) then r = 2 = O(1)].

Define fi; := n;j — o(o + 1)(njit1 — 2n; + nj_1) = &(t)w;, Vi with

No = N1, NN—1 = Np.

Then the solution of this system of equations is given by

N—

N o+1; - =
ni =& Cy( )+CU+1 Z )'f‘

for some constants C; and C_ that depend on the boundary
values.



Smoothness
°

Smoothed equidistribution in space and time [3]

Lemma: This solution n; has the property

o . n; <U+1,Vi

c+1 = n_1~ o

Instead of which is equivalent with 7i; = &(t)w; we set

ﬁi(t) = Ts%ﬁ;(t) = E(t)w,-, Vi

with boundary conditions ng = n1, ny_1 = ny, Vt.

Note that the solution of this ODE — system can be obtained in
terms of an :

ii(t) = exp(t/Ts)[ﬁ;(O)Jr/O 7o L exp(s/7s)c(s)wi(s)ds], t >0, Vi.



Smoothness
°

Smoothed equidistribution in space and time [4]

If we apply, for instance, Euler-Backward to the ODE-system we
can make the following observations with respect to 7s:
7s—0: ﬁE"H) ~ (DM i no time smoothing

i

Ts > At : ﬁgnﬂ)

no grid adaptation

~ A" Vi too much smoothing =

i

7s = O(At) : ﬁ§"+1) ﬁgn) + %C(”“)wfnﬂ) Vi (use old values

as well to adapt grid)

Lemma: For 0 = 75 = 0, i.e., no smoothing at all: n; = &(t)w;)
and w > 0= n; >0, Vi.



Smoothness
°

Smoothed equidistribution in space and time [5]

The case 7, =0, o # 0:
We have seen that 7i; = éw; < nj = €0; Vi (&; > 0). From the
previous Lemma follows n; > 0, Vi (simply replace w; by &;).

Lemma: If n; is the solution given by

N—-1

- o+ ]_ . . o . . o -

ni == C+( pu )I + c C_(m)l +C E (m)'l 'l‘
=1

then, because n; > 0= 7; > 0 Vi.
The case 7 #0, 0 =0

Lemma: n;(0) >0, Vi= n;i(t)>0VYi Vt>D0.



Smoothness
°

Smoothed equidistribution in space and time [6]

The case 7 # 0, 0 # 0:
We then use:

ai(t) + Ts%ﬁ;(t) = &(t)wi, Vi

Lemma: The solution n; (in terms of 7;) is a linear combination of
fi;-values with only positive coefficients (i.e. fi; > 0 = n; > 0).

Theorem:
) Ax;(0) >0 Vi= Ax;(t) >0 Vi, Vt >0.

led Axi1(t) o+l 2



Smoothness
°

An adaptive grid PDE [1]

Consider time-dependent PDE:

du 0%u ou
iy i 5& + s(u, x, t)

X = X(gve)
= t(§0)=0
J = x

= Up — %XeUg = %[%Ué]g — %U{ +s(x, U, 0)
Semi-discretization (uniform in §):
Ua—U  U-=U_

U1 — Ui =
i+1 ] l(X, _ B) _ X:Il Xj Xji—Xi—1 + S,
5(Xi41 — xi-1)

U -
Xi+1 — Xi—1



Smoothness
°

An adaptive grid PDE [2]

Let the transformation be the solution of:
[(S(xe) + moxen)o], = O

Ts = temporal smoothing parameter

weight function: w = /14 >, ak(Uy«)?
o = adaptivity parameters

The smoothing operator S is defined by:

2 02

§=I-o(o+ (8855

o = spatial smoothing parameter



Smoothness
°

An adaptive grid PDE [3]

Some properties of the grid:

i)
TJ=x>0 VY0e[0,T]

In discretized form (A¢ is constant):
Ax;() >0 VOel[0,T]
= No ‘node-crossing’ possible!
i)
PR
X¢ oo+ 1)A¢

In discretized form:
o _ Dxia(6) _o+1
o+1 = Axi(0) — o

Voelo,T]

= ‘Local quasi-uniformity’!



Smoothness
°

An adaptive grid PDE [4]

i)

s=0=0 = xcw=constant V6¢cl0,T]
j;iwdf(
< ) = e
s t) [oFw dx
XL

In discretized form:
Ax; -wj = constant V6 € [0, T]

= Equidistribution of arc-length monitor

iv)

0<7s < 1073 x timescale in PDE model
o=0(1) (o =2 suffices in general)

ay = O(1) depends on x and Uy scales



Smoothness
°

An adaptive grid PDE [5]

Semi-discretization of the adaptive grid PDE:

dAx; ~
7d9+1]w,'+1 — [AX,‘ + Ts

dAx;
do

[Axit1 + 7 Jwi=0

where AX,‘ = Ax; — J(O’ aF 1)(AX,‘+1 —2Ax; + AX,'_l)
= adaptive-grid ODE system:
T B()?, L_j, o, ak))_{ = 7—2()?, lj, o, )

Coupled on semi-discretized PDE system =- large, stiff, banded,
nonlinear ODE system [BDF-methods (order < 5): DASSL]



Application: the Gray-Scott-model [1]

Pattern formation in ferrocyanide-iodate-sulphite reactions:

=08 —u+Al-u)
g‘; 008 + uv? — Bv

from:

A. Doelman, T. J. Kaper and P. A. Zegeling
Pattern formation in the 1-D Gray-Scott model
Nonlinearity, V10, pp. 523-563, 1997



Application: the Gray-Scott-model [2]
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Application: Golden-Gate-bridge-model [1]

Ut + Ugox + U7 —1 =10 with u+:{ (L)” Zzg

The solution u(x, t) represents the displacement of a beam from

the unloaded state.

‘Historical accounts of travelling wave behaviour in the Golden
Gate Bridge in San Francisco motivated us to study this PDE".

It can be re-written as ‘ by = Al + Bil + .7-"‘

where i := (u,v,w)", v =u;, w= ug,F = (0,ut —1,0) and

00 0 010
A= 00 -1 |, B=| 0 0 0
01 0 000

from Champneys, McKenna & Zegeling, Nonl. Dynamics, 21, pp. 31-53, 2000



(a) Solution and (b) the moving mesh method for the 4(2,2,2) wave using the same i
data as in Figure 4. The data presented is for a run with 1501 grid points, a more accuratc run with
2001 produced qualitatively the same a non-trivial task.



Application: Golden-Gate-bridge-model [3]

(a) Solution ta (
the interaction of

with the piecewi
0 primary waves with initial wave spee

lincar term (2) using the fixed grid method showing
1. (b) The equivalent
ing the moving grid method with
identical run with 1001 grid points)

2001 grid points; and (d) motion of the grid (from a qualitative
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Application: a tumour angiogenesis model [1]

be + ([2cx]b)x = 1073by — 4b + 10%b(1 — b)max(0, c — 0.2)

Ct :5CXX—C—1O%, x € [0,1]

b: density of endothelial cells (blood)
c: tumour angiogenesis factor (TAF)

0,if0<x<1
1, ifx=1

b(0,t) =0, b(1,t) =1, c(0,t) =1, c(1,t)=0

c(x,0) = cos(%wx), b(x,0) = {

(numerical experiments with § = 1 and § = 1073)

from Chaplain & Stuart, 1993



Application:

TAF CONCENTRATION

DENSITY of ENDOTHELIAL CELLS (blood)

DISTANCE from TUMOUR DISTANCE from TUMOUR

Zoomed i around steep moving front solution at 1=0.6 EVOLUTION of ADAPTIVE GRID

Adapiive moving grid solution with N=120
N\ .

! Uniform grid solution with N=600

DENSITY of ENDOTHELIAL CELLS (blood)




rivm
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Application: brine transport in a porous medium [1]

(np)t + (pq)x =0, q=—%(p«+pg)
(npw)e + (pwq + pJ)x =0, J = —Alqg|wx

w: salt concentration
the fluid density p satisfies the equation of state

p= poes‘/j(P*Po)ﬂW’w’

ICs and BCs:

w(x,0) =0, w(0,t) =wp >0, wx(1l,t) =0, x € [0, L]

X X
p(X7 0) = po[(l - Z)p/eft + Zpright]

p(0, t) = poprert; P(1,t) = popright

from Zegeling, Verwer & v. Eijkeren, Int. J. Num. Methods in Fluids, 15, pp. 175-191;;1992
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Application: brine transport in a porous medium [2]
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Application: brine transport in a porous medium [3]

12 18
1
08 16
0.6
1.4
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0
-0.2 1
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X X
EVOLUTION of ADAPTIVE GRID
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w
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Application: an MHD-model in 1.75D [1]

Jp Om = m = T
Erah 0 ’Bl :constant‘ u= ; B = (B, By, B3)
om0 m: -, m? B2
el Ty AL R = 1) ) =

et o B (- )+ -1 =0
amz 0 . 8m3 0 _
Tt T axtmy—BiB) =01 | T+ gl (mw - B1B3) =0
0B, 0 0B3 0 =

“ — ) = 2= o 2 _ —

o P (BZU 1V) o =F 8X(B3u Blw) 0
Oe 0 ~ = =
3 T aelire—(r=1)5-+(2-7)%) - BB -ul =0

__p ,u B |
e 1 P > > from A. van Dam & P.A. Zegeling 2005



vy=2>, Bi=1, Q=][0,1000], t € [0,80]

0.5 for x € [0, 350]
plt=0 = , mili= =0

0.1 elsewhere

(s ) — { (0:5:0.05) for x  [0,350]
2 1T3/1=07 (0, 0) elsewhere

2.5 for x € [0,350]
Bo|t—0 =

2  elsewhere , Bslt=0=0

oo — 1  for x € [0, 350]
Plt=0=1 0.1 elsewhere

Homogeneous Neumann BCs
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Application: heat flow of harmonic maps from surfaces [1]

Harmonic heat flow between the 2-disc D and the 2-sphere S:

ur = Au + |Vu|2u, u(x,0) = ¢(x), ulap = olop

Requiring spherical symmetry ¢(x) = [|X7‘ sin(v(|x])), cos(¥(|x]))],
it can be shown that the solution must satisfy

u(x, t) = [ sin(h([x])), cos(h([x]))]

X

Substitution into PDE model gives (using spherical coordinates for
the 2-sphere S)

he = e + Lh, — n25220)

h(r,0) = o(r), h(0,t) =0, h(1,t)=14(1)

from v. Beek, 2004



harmonic
°

Application: a model from harmonic maps [2]




intermezzo
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Intermezzo: the heat equation

The solution of the PDE
with
u(x,0) = sin(nx), u(0,t) =u(l,t) =0, x€[0,1]
and is given by
u(x,t) = e sin(mx)

For v < 0 we have UNSTABLE solutions, whereas for o > 0 all
solutions are STABLE.
In general, for more complicated nonlinear PDE models (with

physical parameters), it is often unknown whether the solutions
remain stable...



Application: the extended Fisher-Kolmogorov equation [1]

Propagation of domain walls in liquid crystals:

e + 10 8o = 10 *yu + u — 13, x €[0,1]

(parameter 7)

u(x,0) = cos(pmx)
u(0,t) =1, u(l,t) = —1, ux(0,t) = ux(1,t) =0

For v = —3 < 7, = —/8 theory predicts multi-bump solutions

from Peletier & Troy, SIAM J. Math. Anal. 1997



Application: the extended Fisher-Kolmogorov equation [2]

Solution at T=0, 1, 2, 3, EFK, N=81

Grid at T=3, EFK, N=81




extKDV
°

Application: the extended Korteweg-deVries equation [1]

Nonlinear water waves in the presence of surface tension:

2
ug + 15 oo + (pu = b)uooc + (3u + 2pue)ux = 0

Explicit solutions exist:

u(x,t) =3 (b + ;) sech? ( 3(2b4+1)(x + at)>

with a = 2(2b+1)(b—2), b > —1/2. Note that —a is the
velocity of the wave.

from P. Saucez, A. Vande Wouwer & Zegeling 2004



extKDV
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Application: the extended Korteweg-deVries equation [2]

0.18r b

0.161 b
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u(x.t)
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extKDV
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Application: the extended Korteweg-deVries equation [3]
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extKDV
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Application: the extended Korteweg-deVries equation [4]




	Equid
	Smoothness
	GS
	GG
	tumor
	rivm
	mhd
	harmonic
	intermezzo
	extFK
	extKDV

