Moving Adaptive Grids (part 3)

P. A. Zegeling

Mathematical Institute
The Netherlands

§ U% Universiteit Utrecht
£

Winterschool
December 1-2, 2018, Moscow



Overview

Contents of part 3

Possible extensions to higher space dimensions:

e Tensor-grid approach

e (Gradient-weighted) moving finite elements
e The deformation method

e The Monge-Ampeére approach

e MM-PDEs

e Near-equidistribution, Winslow... = Part4



Tensorgrid
o

A naive extension to 2D... [1]

Tensorgrids:
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A naive extension to 2D... [2]

The transformed PDE model
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(short notation)
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A naive extension to 2D... [3]

The adaptive grid (~ transformation) satisfies

O [(S1(J1) + 7 0pJ1)W1] =0
Oy [(S2(J2) + 7 09 J2)Wo] =0 (7 >0)

with smoothing operator
S=I-o(c+1)(A*% (0>0)

and
J1 = 0ex, Jo = 0yy

w1 = /1 + o max,[d¢u]?
w2 = /1+ a maxg[0,u> (a>0)
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A naive extension to 2D... [4]

THEOREM
1. J>0, V02>0, (&n)€[0,1]x[0,1]

‘regularity of mapping’

2. agmﬁf" <1/\/o(oc+ 1)Alm, m=1, 2
X
(&:=¢& &:=mn)

‘smoothness of mapping’
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A naive extension to 2D... [5]

forc =7=0—

Ot [Tmwm] =0, m=1, 2

f(x,t):/ wq d)‘(//rwl dx
X X

y Yu
n(y,t) = / wrdy/ | w2 dy
Yi Yi

Solution:

[Equidistribution in each direction]
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A naive extension to 2D... [0]

‘Grid energy':
The grid PDEs are the Euler-Lagrange equations for minimizing

1l A |

n©)= [ O Ba= [ @iy
s Gl y W2

‘grid distribution represents equilibrium state of a spring system’

(state of minimum energy)

THEOREM (semi-discretized version)
1. AX;J(Q) = X,'J(@) = X,'_1J(9) >0, VO, Vi,j
‘no grid points crossing’

1 Axiy1,(0) ..
2. 1+1/0 = A)j,j-@) <1+ 1/07 Vo, Vi, j
‘local quasi-uniformity’ ~» o = O(1)
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Application: a rotating cone [1]

‘8tu:Au+f(x,y,t)‘

u*(x, y, t) = exp(=80((x — r(t))* + (v — s(1))*))

with
r(t) = 0.25(2 + sin(nt)), s(t) = 0.25(2 + cos(rt))

A rotating steep pulse that moves around in circles with a constant
speed and with no change of shape during the movement

39 x 39 grid (uniform starting grid), a =10 =1, 7 = 1073,
tol = 103

from Zegeling, J. of Comp. & Appl. Maths., 166, 2004
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Application: a rotating cone [2]
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Application: a whirlpool model [1]

Vi Y
Oru = — =0 U+
Vt,max I Vt,max I

with
r=+/x24y2+e¢, v, = tanh(r)/ cosh?(r)
Vemax = 0.385, u|t=0 = —tanh(y)/2, Onhulag =0
Q=[-4,42 te]0,4]

The formation of cold and warm fronts in a two-dimensional
setting with a rotational velocity field = twists the front
(~ daily-weather maps)

39 x 39 grid (uniform starting grid)
a=10=11=10"3, tol =103
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Application: Burgers' equation [1]

Oru = €eAu—u 8xu—(g —u) Oyu

. 8 1 1
ut(x,y, t) = 2 4 i+ o0 74x+3f12y;t+2

‘Burgers’ equation’ (scalar version): describes a wave front with a
steep transition area of thickness O(¢€) that moves under an angle
of 135° with the positive x-axis

(‘counterexample’ for tensorgrid approach)
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Application: Burgers' equation [2]

01 02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09 1

(exact solution)
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Application: Burgers' equation [3]

Adaptive moving grid solutions; see Part 4:
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Overview: adaptive moving meshes
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Moving finite elements [1]

Miller, Baines, Carlson,

A two-dimensional moving grid technique (MFE) based on the minimization
of the PDE residual is obtained by approximating the PDE solution u with
piecewise-linear finite element basis functions (see Baines [6], Miller et al
[34, 35], Zegeling [49]). There are several ways to describe this method.
Here, we follow the concept of the transformation between the physical and
computational domain:

ur U= Uj(0) a;(&n), v~ X =Y X;(0) aj(&n), y=Y =D Y;(0 o),

= = =
(20)

where a are the standard ‘hat’ functions on 2D having a limited support and
J stands for the index set of the grid points. Substituting (20) into the time-
dependent PDE model gives, in general, a non-zero PDE residual U, — L(U).
To obtain equations for the grid movement, a minimization procedure (‘least
squares’) is applied with respect to the, yet unknown, variables U;, X;, Y;
of the following quantity

/' (U —U.X —U,Y - LU))? T dédn Vi e J. (21)
0
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Moving finite elements [2]

Here J denotes the Jacobian of the transformation. After re-writing (21)
in the physical co-ordinates, we obtain the system

/(U, ~ L(U))agdady =0, Vi€ J,

JQ

/(Ut — L(U))Upidady =0 Vi€ J, (22)
JQ

/(UL — L(U))Uya;dady =0 Vie J.
Q

Working out the innerproducts and adding small regularization terms Pj o
and Q12 to keep the finite-element parametrization non-degenerate, yields
for i € J:

Z <ap o> U4 <o, B > X+ < iy > Y =< ag, Li(U) >
leJ

S < B > Ut < B, B> Xit+ < B > Vit Pa(ed) =< B, Li(U) > +Qu(e3)
leJ

S <o > Ut < %, B> Xi+ < viom > Vit Pa(ed) =< 7i, Li(U) > +Qa(e3),
1y
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Moving finite elements [3]

where 3; = —U,q;, v = —Uya; and < e, e > is the standard Lo-innerproduct.
Using 72 = (..., U;, X, Vi, )’ as before this can be re-written as:

Ali:fr‘(’/Z-F%)’iZ = Gmfr‘(’/ZZ-fg)' (23)

5 5 .
The small parameters € and €5 serve to keep the extended mass-matrix
Apne and the right-handside G, . non-singular, respectively. It is worth-
wile to note that the previous derivation can easily be done in higher space

dimensions as well.
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Moving finite elements [4]

The more sophisticated GWMFE (see Carlson et al[14, 15]) uses an addi-
tional gradient-weighting term in the innerproducts of the form < w(VU )e
However, in general, the results shown below hold, for the greater part,
for GWMFE, possibly with some minor modifications.
Some properties of the moving grid for MFE:

Consider now the PDE (2) in one or two space dimensions. In one space
dimension it can be shown, Zegeling et al [48], that for #.J — oo and
€? = €3 = 0 the grid moves as a perturbed method of characteristics:

lso

(29)

Uz &
where £ is the spatial co-ordinate in the computational domain. Numerical
solutions of (23) for Burgers’ equation (14), clearly indicating property (24),

1in Figure 10. From equation (24) it can be derived that for si -

state situations (‘35 = % = 0) an equidistribution-like relation holds for thL

are giv

& 1/3 = constant. 25
% e (25)
In two space dimensions it is known that the grid moves in a similar way:
0,
— =1+ 6, 26
O = fa+d0n (20
N
Y By + 6.

o8
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Moving finite elements [5]
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MM-PDEs [1]
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Huang, Russell, ...:

2327 Huang, Ren and Russell's MMPDE approach
In 1994, Huang, Ren and Russell [HRR94] presented an adaptive moving mesh
method in 1D, based on moving mesh PDEs (MMPDES) that strive to achieve
the equidistribution principle. Later, they extended some of the better MM-
PDE:s to two dimensions, now motivated from the theory of harmonic maps,
which results in gradient flow equations [HR97a, HR99]. In 2001 Huang
describes the practical aspects of the actual implementation [Hua0la]. Sub-
sequent work of the same author concentrates on proper monitor functions,
which we will discuss in Section 2.5.3.

In the MMPDE approach, the mesh map is explicitly time-dependent, i.c.,
©(&,1). Several one-dimensional MMPDES are proposed; one that lies very
close to equidistribution (2.21) is MMPDE5:

10 O
== (w= 2.4
! r(‘)f( Uf)' (240)
28 2. An Overview of Mesh Adaptivity

where 7 > 0 is a time-relaxation parameter to it the speed of mesh movement
approximately to the typical physical time scales (see page 43). Clearly, the
mesh points are moved towards regions of large w and the mesh speed is
zero when exact equidistribution is attained.



MM-PDEs [2]
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where 7 > 0 is a time-relaxation parameter to fit the speed of mesh movement
approximately to the typical physical time scales (see page 43). Clearly, the
mesh points are moved towards regions of large w and the mesh speed is
zero when exact equidistribution is attained.

In the general, multidimensional gradient-flow formulation [HR99], the
mesh functional is generalized to:

I:= / [( TGNV + (Vi) Gy (V)| dx, (241)
Ja

where the symmetric positive definite matrices G;; and G are the monitor
functions. When Gy = G, = G/,/g it is a genuine energy functional (2.39),
resulting in a harmonic map, but many other choices have been considered.
The functional derivatives —d1/6¢ and —41/dn are the directions in which
I descends the fastest. The Euler-Lagrange equations yields the functional
derivatives for (2.41):

d_ v (6i've),

33

-_v. ( ;glvy,) (242)

These functional derivatives define the movement of the mesh points:

%)i:fﬁﬂ, ﬂ:fﬁﬂ (2.43)
ot o ot T on
where Py and P, are operators with positive spectrum that allows one to
change the descent directions and  changes the time scale of the mesh equa-
tion. For example, limiting the above equations to one dimension, P = (£)*1
gives the above one-dimensional MMPDE5 (2.40), where I is the identity
operator. Other choices for P result in other MMPDEs by Huang et al
Mackenzie and coworkers have employed MMPDEs for a wide range of
applications. Amongst these are phase-field equations modeling fluid solidi-
fication and other state transitions [MR02, BMRO06], and the Hamilton-Jacobi
equations modeling front propagation [MNO7].
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Deformation method [1]

Liao, Anderson, de la Pena,..

2333 Deformation method
In 1992, Liao and Anderson [LA92] proposed a new way of adaptive mesh
generation, motivated by problems in extending harmonic maps and Winslow’s

variable diffusion to three dimensions. Over the following years, Liao and
coworkers further developed the deformation method. This method yields a
mesh map whose Jacobian determinant can be prescribed exactly, namely:

J = detVex(€,1) = where x €QCR", > 0. (273)

1
w(x(€, 1)
It achieves equidistribution in any number of dimensions for all times.

The main theorem is inspired by Moser and Dacorogna’s work [Mos65,
DM90] on diffeomorphisms on manifolds with prescribed Jacobian. The co-
ordinate map is an automorphism, e.g., on the unit cube. If the physical
domain is different from the computational domain (Q # ), an additional
transformation can be included, e.g., a linear scaling on rectangular domains
or a curvilinear transformation around an airfoil. Liao et al. [LPS94] show
that this does not invalidate the original proof.

The existence of a map that satisfies the equidistribution property (2.73)
is valid for any number of dimensions, the proof is by construction. We
discuss a time-dependent map here, for the static case we refer to the original
publications.

Suppose we have a monitor function w > 0 that is ‘normalized’ such that
at each time it satisfies:

(x,t) — 1)dx = 0. (2.74)
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Deformation method [2]

The idea is to evolve the mesh map x(£, ) according to a well-chosen velocity
field v(€, t). The first step is to find a field that satisfies:

Ve V.0 =~ D) 275

This is a scalar equation for the unknown vector-valued function v, so it is
underdetermined. A vector field can always be written as the sum of the
gradient of a potential and the curl of some other vector potential. Liao et
al. [LJL99] neglect the second term, because they impose zero curl (Ve x v = 0)
in order to allow points to move along the boundaries. Substituting this form
of v in (2.75) gives:

vi=Vea = Via= 7%¢; (2.76)
é

Now the velocity field is the solution to a Poisson equation, completed by

Neumann boundary conditions that keep the points on the boundary:

da
=0.
on

The second step is to solve the ODE system:

(’:’(;), for ¢ >0, x(€,0) = x0(€). 2.77)

These two steps will make sure that the resulting mesh satisfies equidistri-
bution, as we will show in Theorem 2.3.3. Interestingly, though, they are
also equivalent with the GCL-based approach (see next section), since the
substitution of (2.77) in (2.75) yields Vg - (wx) = —w;, which is (2.85).
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Deformation method [3]

Theorem 2.3.3 (Equidistribution for deformation in n dimensions). Let xo be
an initial mesh map that satisfies J(xo) = 1/w(x0(€).0). The time-dependent mesh
map obtained from (2.76) and (2.77) satisfies J = 1/w(x, t) for all t > 0.

Proof. We only need to prove & (J(x)w(x, 1) = 0 for all ¢ > 0.

d oD
=W )+ G Ve 1)

d v
=WE(,/)+J(;

a
Vot rolx, r)). (278)

The time derivative of the Jacobian matrix can be derived using (2.77):

d d v v
avéx(e.r):vs(ax(g.r)) =Q(;) :T(:)st, (279)
which is a matrix differential equation, for which holds in general:

s ? d . ;

LX) = ADX(W) = Sdet(X(t) = trace(A(t)) det(X (1).

at a
We can now introduce the determinant in (2.79):

;./= :/der(;/)z (v (Z))/: (1v»v+v v(i))/ (2.80)

Finally, the definition of the velocity field (2.75) implies V-v(x, ) = — &w(x. 1),
so that (2.78) simplifies to:

;:/(vm:( :))/w-uv v(l))
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Monge-Ampeére approach

Budd, Williams, Sulman, ...:

23210 Monge-Kantorovich optimization

The latest approach for adaptive mesh generation is Monge-Kantorovich op-
timization. The key difference of this method with the other methods dis-
cussed, is the following. Instead of optimizing some combination of adapta-
tion criteria and mesh quality measures, the Monge-Kantorovich approach
enforces local equidistribution and then optimizes some mesh quality measure
under this constraint. Monge’s mapping problem [Mon81] and Kantorovich's
associated optimization problem [Kan42] go back a long time. Only recently,
Budd and Williams [BWO06] employed it for mesh adaptation using relax-
ation. Delzanno et al. [DCF*08] solve the full nonlinear system instead of
using relaxation

Monge-Kantorovich optimization aims to find a mapping that satisfies for
any set A, C O, (which maps to A := {x(§) € € A} C Q)

/ dff/;(x Hdx, ie, w/=1, (258)
; .
and—under these constraints—minimizes the point displacement:
x — €13 -
d 2.59)
[t @59

The constrained minimization problem can be put into variational form by
including the equidistribution constraint with a local Lagrange multiplier:

= [ 128

‘The Euler-Lagrange equations imply x £ = V), i.e., the map x(€) := € + Ve
is a gradient map. Inserting this into equidistribution relation (2.58) yields
the Monge-Ampire equation to the displacement potential 4

+ME)(w(x)J —1)dE (2.60)

+H(®) = 1; (2.61)

1
Gxt)

where / denotes the determinant of the Hessian matrix

PRTET P>
H® = 5a o ((/:u,,) (2.62)
Budd and Williams solve their M, ere equation by

p
Using temporal relaxation, an approximate potential tends to the exact solu-
tion over time. The Monge-Ampere equation in its relaxed form is parabolic
(PMA), from which a convex potential and thus Jacobian positivity can be
proved. This approach is similar to the relaxation approach that yields the
MMPDES (Section 2.32.7). In fact, the PMA equation simplifies to one of the
MMPDEs in 1D.
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