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Overview
°

Contents of part 4

Parameter-free non-singular moving grids in 2D:

e Theory & properties

e Application to a tumour model

e Application to resistive Magneto-hydrodynamics
e Application to the 2D Euler equations

e Extension to 3D and application to blow-up models



Physical vs. computational coordinates [1]

The 2D adaptive grid can also be seen as an approximation of a
coordinate transformation between computational coordinates

(fﬂ?)T € Q.= [07 1] X [07 1]
(with a uniform grid partitioning) and physical coordinates
(x,y)" € Q, CR?

(with a non-uniform adaptive grid)



‘steep’ solution ’mild’ solution

non-uniform mesh



2D case
.

Winslow's method

In a variational setting, a ‘grid-energy’ functional (a la Winslow)
can be defined as

1
52// (VwaVX—I-VTway) dédn,
2 /Ja.

where V = (8%, B%)T and w > 0 is a monitor function.
Minimizing the energy £ yields the Euler-Lagrange equations:

V- (wVx)=0
V- (wVy)=0

on Q. = [0,1] x [0, 1] with BCs:
X|e=0 = X1, ¥|y=0 :a)/La X|§:}3= XRy Y|n=1 = yu,
0 _ 8 _ _ _
Inle=0 = Grle=1 = Fhlu=0 = F4ln=1=0.



2D case
°

The adaptive grid seen as a system of springs




2D case
.

Regularity of the transformation in 2D

Theorem [Clément, Hagmeijer & Sweers, '96]:

Letw>&>0, we C¥Y(Q) and we,w, € CV(Q.), for some
v € (0,1).
= 3 unique solution (x,y) € C*(Q.), which is a bijection from
QC into itself. Moreover, the Jacobian satisfies:

J = Xeyn — Xpye > 0.

The three main ingredients of proof are:

e Carleman-Hartman-Winter Theorem (3D?77)
e Jordan Curve Theorem (3D77)

e Maximum principle for elliptic PDEs (3D ok!)



2D case
°

A few additional properties of the 2D grid

Equidistribution in 1D:| x¢ w = cst
~~
J

Winslow in 2D: [ V(x¢) - V(yy) — V(xy) - V(ye) =0=J w = cst
(remember: J = xeyy — Xyye)

* the transformation behind Winslow's method is not a harmonic
mapping, but it is related to it

* a counterexample can be given for the 3D (harmonic) case, for
which the transformation looses its regularity (Liao et al '94)

* several components in the proof of the 2D Theorem can not be
applied in 3D either...



2D case
.

The monitor function w

Arclength-type (AL-) monitor:

w=vV1+aVu-Vu

a is a (problem-dependent) ‘adaptivity'-parameter which controls
the amount of adaptivity.

BM-monitor (Beckett & Mackenzie > '01):

1 1
w=at)+||VulF, with a(t)= // IVullF dédy
Q¢

m = 1: better scaling and more adaptivity than for m = 2



2D case
°

Smoothness of the BM monitor function

: 00 o — Y[Vl ;
Define (Huang '02) o =1+ T T, IV llz 967 with v € [0, 1)
[l @ dédn —1
= Y= =
foC w dédn

! . [ Vul
5, we haVe w = 1 T
2 + T I9ull> d€dn

points is concentrated in regions of high spatial derivatives, since

For v = == 50% of the grid

o foc @ d&dn ~ the total # of grid points
o foc @ dédn — 1 ~ the # of grid points in the steep layer

= a smoother distributed grid than for the AL-monitor (with
constant «) and «(t) is automatically computed!



2D case

Smoothing of the AL-monitor function

With the BM-monitor, application of a filter or smoother to the
grid or monitor values is not necessary.

Normally, smoother transitions in a general non-uniform grid can
be obtained (and are needed!) by working with the smoothed value

1

S(Witg 1) = 79ingird T gWindits Wi bt T 9t

1
+wi+%,j7%) + E(wi,%d-,% TWi 143 FWiys; 1+ wi+%J+§)
In the numerical experiments we denote this with filter on or filter

off (working merely with w; 1 ;.1 values i.e. S(w) = w).



tumourmodel

Application 1: a 2D tumour model [1]

[ M.A.J. Stuart & A.M. Stuart,

A model mechanism for the chemotactic response of endothelial cells
to tumour angiogenesis factor,

IMA Journal of Mathematics, V10, 1993.

up = e1Au— V- (usVu) + pu (1 — u)max{0,v — v*} — du
puv

v

Vi = e2Av — Av —




tumourmodel

Application 1: a 2D tumour model [2]

TIME=0.25




tumourmodel

Application 1: a 2D tumour model [3]

ADAPTIVE GRID ADAPTIVE GRID ADAPTIVE GRID

ADAPTIVE GRID




resistive MHD
°

Application 2: resistive Magneto-HydroDynamics

ap B
E‘i‘v-(pv)—o

9(pv)
ot

+ V. (pVV — BB) +thot =0

0
i + V- (ve+vpior — BB -v) =1,(V x B)2

%?—l—V-(vB—BV)_nmAB

B2 v2  B?
pr— —_— pr— — 1 —_— S
ptot p + 2 9 p (’7 )(e p 2 2 )




resistive MHD
°

Where can we find these models?




resistive MHD
°

Kinematic flux expulsion in 2D [1]

82
B < Zolvi? =
1
B
%:VX(VXB)+77,,,AB
[with V-v=0]
2—0 B=(B1,B,0),V-B=0=
82_’ — 1, b2,Y), —
0B; 0B> 0B; vy 19)%)
=nmAB — - B,— — Bi—=
ot " 1+V18y V28y+ 26)}/ 18y
882 852 881 6V1 8V2
922 ABy — v 2 1, 2L B, g 92
gr MM e T Pk T T ok




resistive MHD
°

Kinematic flux expulsion in 2D [2]

‘B =V X A, where A := vector potentiaI:>‘

%?_vx(VxA)—anx(VxA)
B3 =0 (=A1=A=0) ]|
0As 0As  0As
T B T g AA
ot~ "ax gy TmoM

where vi(x,y) and vo(x, y) are given and satisfy

8V1 8V2_
A




resistive MHD
°

Kinematic flux expulsion in 2D [3]

Four-cell convection (Weiss '66):

vi(x,y) = sin(27x) cos(2my)
va(x, y) = — cos(2mx) sin(2my)

0<77m<< 1, A3|t:0:1*X

Aslx=0 = 1, A3|x=1 = 0, A3|,—0 = A3|,=1




resistive MHD
°

Global solution behaviour [1]

10 <nm < 1=

write formal asymptotic expansion in 7p,:

3(x,y,t) = Za3dxy,

Substitute expansion into PDE and check first-order term (setting
Nm = 0); this gives hyperbolic PDE:

Oas
ot

= —V- Va370

initial solution stays constant on sub-characteristics given by:

().(a}})T =




resistive MHD
°

Global solution behaviour [2]

As V -v = 0, the only critical points in ODE system are center
points or saddle points (~~ 'field amplification’).

At some point of time, the solution a3 o(x, y, t) can not satisfy the
boundary conditions of the original PDE model: boundary (and
internal) layers are formed of width O(,/7,) (~ 'magnetic flux
concentrates at edges of convective cells’).

For t — oo the solution reaches a non-trivial steady-state, in which
the diffusion and convection terms settle down to an equilibrium.



resistive MHD
°

Global solution behaviour [3]




resistive MHD
°

The numerical algorithm for the 2D case

e advection-diffusion-reaction PDE(s)

e decoupling of physical and grid PDEs

e grid PDEs: system of heat eq’s with artificial time
e fixed time steps At

e Implicit-explicit time integration: 1-SBDF

e ‘freezing’ of non-linear terms in PDEs

e BiCGstab + diagonal preconditioning



resistive MHD
.

Transformation of the PDE model [1]

0A3 0A3 0A3
—— = —v— — vp— + 1 AA
ot o — 2 dy B }

£:§(X,y, t)a 77277(X,y, t), 0=t

Using the chain rule of differentiation:
A3zr = Az 90; + Az &t + A3 e
We can also find that
1
Er = =00l = Wiy = —?(Xayn — Yoxy)

Recall:

‘j = XeVn _Xnyﬁ‘




resistive MHD
°

Transformation of the PDE model [2]

Using a similar relation for n; gives us

Az 3.

A
Az = Az + 7 (Xn)/0 - Xeyn) —+ 7 (Xe}fé - ngg).

Since & = %,6, = =2 ,1, = % and 1, = —%, we find for the
first-order spatial derivative terms:

1
Az x = 7(/43,5)’77 — Az pye)

and 1
Asy = —(Aspxe — Az exy).

J



resistive MHD
.

Transformation of the PDE model [3]

PDE in computational coordinates becomes:

T Az + Az ¢(xnyo — Xoyn) + Azn(xoye — XeYo)

= Az e(—viyy + voxy) + Asp(viye — vaxe)+

2+ 2 +
Mm[(FF 2 Ag ) — (X2 Ag ) —

+ X2+y2
(WA&OT] +( gj : A37n)n]

7= e =]




resistive MHD

Numerical results; four-cell convection [1]

Weiss-model, Four-cell convection; velocity field (u(x,y).v(x.y))"

e~ N s e
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X #of TIMESTEPS



resistive MHD

Numerical results; four-cell convection [2]




resistive MHD

Numerical results; four-cell convection [3]




2D Euler
[ I}

Application 3: the 2D Euler equations

0 pu pv 0
O | pu 9| put+p 9 puv _ |0
ot | pv Ox puv oy pv2 +p 0
E u(E + p) v(E + p) 0

p : density

(pu, pv)T : momentum vector

E : total energy L
p : pressure = (y — 1)(E — p*5*°)
Write hyperbolic PDE system as:

09 i 0F1(Q) i 0F>(Q)

ot Ox oy

=G(x,y,Q)






2D Euler
©00000000000

Discretization of the grid PDEs

* Given a non-uniform partitioning {A

Ai+l j+2
213
(denote numerical approximations to x = x(&,1) by x;j = x(&i, 7))

,-+%_J-+%};7j of Qp, where

is a quadrangle with four vertices x; 4 jy/, 0 < k,/ <1

* Subdivide Q. = {(&,7)] 0 < £ <1, 0 <n <1} uniformly:
()l & = iAg, nj=jAn; 0< i<l +1,0<j<lp+1

* Discretize the elliptic system of grid PDEs by second-order
central finite differences

* Apply a GauB-Seidel iteration method to the resulting system of
algebraic equations



2D Euler
0®0000000000

A conservative solution-updating method

e Having computed the new grid, the solution values @ have to be
updated on this grid by interpolation
(Tang et al '03 use a conservative interpolation method)

* Simple linear interpolation is not good enough
e Denote with x;; & X;; the coordinates of old and new grid
points (x;; moves to X;; after GauB-Seidel iterations)
e Using a perturbation technique and assuming small grid speeds,
then the following mass-conservation is satisfied:

Z‘AI+2J+1’ Q; TEVE Z’Ai+§J+%| Qirljtl

i

where |A| is the area of cell A



2D Euler
0O®000000000

Finite volume discretization on non-uniform grids [1]

00  0F(Q) 0FQ)
E+ ax + ay _g(Xv.yaQ)

Integration over the finite control volume A,-JF%JJF%:

%))
— Q dxdy + / X ds = // g dxdy
ot Ai+%,j+ Z |( Y)Es; A 1

with Fi(Q) = Finl + Fan), and Fy = FH + F

Discretization =



2D Euler
000800000000

Finite volume discretization on non-uniform grids [2]

At
n+1 n n
Q’+2’1+2 Q'+2’J+2 |A 2J+1|{ (Q’+ 24— 1)+ 2(Q,+ f+2)
FF Qs (s +Z Q01 ) [ +AEGN

The time step size At is determined every time step by

min(Ax, Ay) CFL

At =
max ||

)

where A are the eigenvalues of the Jacobian matrix 3—5



2D Euler
0000®0000000

Decoupling of the grids and physical PDEs

Step 1 Partition Q. uniformly; give initial partitioning of p;
compute initial grid values by a cell average of control

volume Ai+%,j+% based on initial data Q(x,y,0).
In a loop over the time steps, update grid and
solution and evaluate the PDE:

Step 2a Move grid x; j to X; ; by solving the discretized grid
PDEs using GauB-Seidel iterations.

Step 2b Compute QI-JF;J-JF; based on conservative

2" 2

interpolation. Repeat step 2a and step 2b for a fixed
number of GauB-Seidel iterations.

Step 3 Evaluate the physical PDEs by the finite volume

Rl & 4 ; n+1 n+1
method on the grid X; ; to obtain Qi+§,j+% at t""m.

Step 4 Repeat steps 2a, 2b and 3 until t = Tend is reached.



2D Euler
00000@000000

2D Riemann problem: shock waves

The first test example is a two-dimensional Riemann problem
(config. 4 in Lax & Liu '98) and has the following initial data:

(1.1,0.0,0.0,1.1) if x> 05, y > 0.5,
(0.5065,0.8939,0.0,0.35) if x < 0.5, y > 0.5,
(py u, v, P)e=0 = (1.1,0.8939,0.8939,1.1) if x < 0.5, y < 0.5,
(0.5065, 0.0,0.8939,0.35) if x > 0.5, y < 0.5.

They correspond to a left forward shock, right backward shock,
upper backward shock and a lower forward shock, resp. The
spatial domain Q, is [0,1] x [0, 1] and Tepg = 0.25.



2D Euler
000000@00000

Comparison: AL vs. BM-monitor vs. uniform grid

’ RUN # ‘ monitor ‘ o} ‘ m ‘ filter‘ runtime ‘

[ AL-monitor 001] - | on [ 0P15™

[ AL-monitor 01 | - | on | 0P47™
11 AL-monitor 2.0 - on oh3m
v AL-monitor 10.0 | - on 5h4gm
\Y) AL-monitor 2.0 - off 3hpgm
VI BM-monitor = 2 off OhRb7™
VI BM-monitor - | 1] off | 1P09™
VIIl | uniform (400 x 400) | - | - | - | 1ho5™
IX uniform (600 x 600) | - | - | - | 37507

Table: A shock wave model (configuration 4 from Lax & Liu '98)



2D Euler
000000080000

Numerical results for the AL-monitor

fii
ottt il
sl
gt
f
it S
Al
MR

left: o = 0.01, middle: a = 2, right: o = 10



2D Euler
000000008000

Numerical results for the BM-monitor

left: uniform grid 4002 and 6002, middle: m = 2, right: m=.1



2D Euler
000000000800

The adaptive grid: a close-up near (0.92,0.15)
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left: AL-monitor (o = 2 & filter off); middle: AL-monitor (o = 2
& filter on); right: BM-monitor with m =1 (no filter needed)



2D Euler
000000000080

The Rayleigh-Taylor instability model

* This instability happens on an interface between fluids with
different densities when an acceleration is directed from the heavy
fluid to the light fluid

* It has a fingering nature, with bubbles of light fluid rising into
the ambient heavy fluid and spikes of heavy fluid falling into the
light fluid

* Here we have non-homogeneous BCs and an extra source term in
the PDE-system: G = (0,0, pg, pvg) ", where g is the acceleration
due to gravity



2D Euler
00000000000e

Numerical results for Rayleigh-Taylor instability [1]

Results at t = 0.5, t = 2.0




3D case
°

Extension of Winslow to 3D

Minimization of grid-energy yields in 3D:
V- (wVx)=0
V- (wVy)=0
V- (wVz)=0, (x,y,2)7 €[0,1]®

with

w=a(t) +[|Vull2, o(t) = [ [ o [IVull2 d€dnd

Y

Non-singular transformation? Theory?



3D case
°

Extension of Winslow to 3D

Minimization of grid-energy yields in 3D:

V- (wVz) =92 (x,y,2)T €[0,1]®

with

w=a(t) +[[Vullz, a(t) = [ [ fo, IVull2 dedndg |

Non-singular transformation? Theory?



3D case
°

Transformation of ‘a blow-up PDE’

The PDE %% = Au+ uP

transforms via (x,y,z,t) = (&,7,(,0); with t = 0 to:

up + S lug(—xo(ynze — vezn) — vo(xczn — xnz¢) — 20y — xcym)) + un(—xo(veze — yezc)

—yo(xeze — xc2ze) — 2g(xcye — xeye)) +uc(—xo(vezn — ynze) — yo (xnze — xezn) — 29 (xeyn — xnye))] =

1 (yWZC — yczn)2 + (XCZTI — x.qzc)2 + (XWYC — XCYTI)Z
— ug aF
g J 3

((Ynzc — Yezn)veze — yeze) + (xgzn — xnze)(xezg — x¢ze) + (xnye — xeym)xeye — xe¥ve) | ) n
n
J 3

((yan — ¥¢Zn)ezn — ynze) + (x¢zn — xnz¢)mze — xezn) + (xnye — Xcyn)(xeyn — xnye) “c) "
J 3

((Yczs — ¥e2c)ynz¢ — yezn) + (Xez¢ — X¢2g)(Xg2n — xn2¢) + (x¢Ye — Xey¢)Omye — Xcyn) u{) N
J @

with T = z¢(xeyn — xnye) — 2n(xeye — xeye) + ze(xnye — xcyn)



Blow-up
°

Blow-up models (intro) [1]

(Aplietimaes

Application areas:

e Combustion models & chemical reaction dynamics
e Population dynamics: motion of colonies of micro-organisms

e Plasma physics: wave motion in fluids and electromagnetic fields



Blow-up
°

Blow-up models (intro) [2]

Consider the ODE:

{L'Jzup, p>1
u(0) = wp

Exact solution:

T=—+

_ 1
u(t) = Gor=or T = 7o

u(t)

u

0

t=0 t=T t
solution blows up at time T



Blow-up
.

Blow-up models (intro) [3]

Consider the PDE:

% =Au+uP, p>1
ulpa = 0, u(x,0) = up(x)

Kaplan 1963: if up smooth and large enough, then the solution u is

regular for every 0 < t < T, but

t||_>m_l_\|u(-, t)|| g = o0




Blow-up
°

Blow-up models (intro) [4]

Another PDE example:

%:%—u-l-up, x € (0,m), t>0
{ u(x,0) = uo(x) > 0, x € (0, ),
u(0,t) =u(m,t) =0, t >0

o Let f = [ u(x,t)sin(x) dx, then f = fow(% — uP)sin(x) dx —f
Via Holder's inequality: f > —2f +

2p—1

o If £(0) > 27T, then f(t) — oo in finite time
By Cauchy-Schwartz: f < HuHﬁz(Oﬂr) HSi“(X)HLZ(o,w)

e Thus f — oo implies ||ul|z2(g,x) — o0
= u leaves £2(0,) in finite time



Blow-up
.

Adaptive time steps with a Sundman transformation [1]

Numerical solution exists for all t" = nAt (i.e. no blow up...)

u(t)

num.
solution
.

exact
solution

N
s
\




Blow-up
°

Adaptive time steps with a Sundman transformation [2]

Explicit Euler + central FD's for u; = uy + uP:

nt+l n n n n
u; uj _ uliq 2uj + ul 4 (Y
Atn (Ax)>? J
with At" = T ﬁﬁ,,l and constant Af
u"|[8s

(~ a Sundman time transformation t(6) = HUH%)

= for sufficiently small Ax (+ stab. restriction on At”"), the
numerical solution blows up at Ta, and limayx_o Taox =T
(Abia et al, 2001)



Blow-up

Adaptive time steps with a Sundman transformation [3]

In terms of scaling invariance and self-similarity:

Consider the ODE 4 = u?, i.e. p =2, then using a fictive
computational time variable 6 gives rise to a new ODE system with

du __
{2,
di _ 1
do — u

that is invariant under the scaling t — \t, u — A\1u and for
which the numerical solution u” uniformly approximates the true
self-similar solution u(t) = —% of the original ODE for Af — 0.
(Budd, Piggott, Leimkuhler et al)



Blow-up
°

The numerical algorithm in 3D

@ decoupling of blow-up and grid PDEs

@ grid PDEs: system of heat equations with artificial time

@ central finite differences on non-uniform grid for A

o ‘freezing’ of non-linear terms in PDEs in each time step

@ implicit Euler for A and explicit for reaction term

@ BiCGstab + ILU-preconditioning for underlying linear systems

@ variable At using Sundman-transformation



Blow-up

Blow-up in 3D [1]

Case 1:

u(x,y,2,0) = exp(=30((x — 3)* + (y — 3)* + (2 = 5)?)

(p=3, 113/213/413 grid; with or without Sundman t())

nnnnn

Maximum value of u as a function of time t.



Blow-up

Blow-up in 3D [2]

Case 1 (cntd.):

Adaptive grids and numerical solutions at two points of time just
before blow-up (note the scale of the solution in each of the plots)



Blow-up

Blow-up in 3D [3]

Case 2:

u(x,y,z,0) = 10sin(mx) sin(mwy) sin(7z)
(p=3, 113/213/413 grid; with or without Sundman t(6))

blowup2, 4173, onitor 1

experiments ~ T from Liang & Lin, 2005: ~ 0.007249)



Blow-up

Blow-up in 3D [4]

Case 2 (cntd.):

- ~_
e S
i value
000 e 319 aro__es

Adaptive grid and numerical solution just before blow-up
(right plot: close-up of grid and solution)



Conclusions
(1)

Summary of Part 1-4

e 1D adaptive moving grids: a lot of theory is available with many
applications!!

e 2D on "simple” domains: some theory, but several applications!

e the 3D case: theory is difficult and only a few applications yet:
in development.



Conclusions
oce

Final remarks

e ALL adaptive moving grid methods (r-refinement), when
restricted to 1 space dimension, are related to:

* either: method of characteristics (velocity based grids)
* or: equidistribution principle (location based grids)

% or: a combination of the above two!
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