

Moving Adaptive Grids (part 4)

P. A. Zegeling

Mathematical Institute The Netherlands

Universiteit Utrecht

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Winterschool December 1-2, 2018, Moscow

Contents of part 4

Parameter-free non-singular moving grids in 2D:

- Theory & properties
- Application to a tumour model
- Application to resistive Magneto-hydrodynamics
- Application to the 2D Euler equations
- Extension to 3D and application to blow-up models

Physical vs. computational coordinates [1]

The 2D adaptive grid can also be seen as an approximation of a coordinate transformation between computational coordinates

$$(\xi,\eta)^{\mathcal{T}}\in\Omega_{c}:=[0,1] imes[0,1]$$

(with a uniform grid partitioning) and physical coordinates

$$(x,y)^T \in \Omega_p \subset \mathbb{R}^2$$

(with a non-uniform adaptive grid)

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

 0
 0
 0
 0
 0
 0
 0
 0
 0

Physical vs. computational coordinates [2]

Winslow's method

In a variational setting, a 'grid-energy' functional (à la Winslow) can be defined as

$$\mathcal{E} = \frac{1}{2} \iint_{\Omega_c} \left(\nabla^T x \ \omega \ \nabla x + \nabla^T y \ \omega \ \nabla y \right) \quad d\xi d\eta,$$

where $\nabla = (\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta})^T$ and $\omega > 0$ is a monitor function. Minimizing the energy \mathcal{E} yields the Euler-Lagrange equations:

$$abla \cdot (\omega
abla x) = 0
onumber \
abla \cdot (\omega
abla y) = 0$$

on $\Omega_c = [0,1] \times [0,1]$ with BCs: $x|_{\xi=0} = x_L, \ y|_{\eta=0} = y_L, \ x|_{\xi=1} = x_R, \ y|_{\eta=1} = y_U,$ $\frac{\partial x}{\partial n}|_{\xi=0} = \frac{\partial x}{\partial n}|_{\xi=1} = \frac{\partial y}{\partial n}|_{\eta=0} = \frac{\partial y}{\partial n}|_{\eta=1} = 0.$
 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

 0
 0000000000
 0000000000000
 0000000000000
 000
 00000000000
 000

The adaptive grid seen as a system of springs

Regularity of the transformation in 2D

Theorem [Clément, Hagmeijer & Sweers, '96]:

Let $\omega \geq \tilde{c} > 0$, $\omega \in C^{0,1}(\Omega_c)$ and $\omega_{\xi}, \omega_{\eta} \in C^{\gamma}(\bar{\Omega}_c)$, for some $\gamma \in (0, 1)$. $\Rightarrow \exists$ unique solution $(x, y) \in C^2(\bar{\Omega}_c)$, which is a bijection from $\bar{\Omega}_c$ into itself. Moreover, the Jacobian satisfies:

$$\mathcal{J}=x_{\xi}y_{\eta}-x_{\eta}y_{\xi}>0.$$

The three main ingredients of proof are:

- Carleman-Hartman-Winter Theorem (3D??)
- Jordan Curve Theorem (3D??)
- Maximum principle for elliptic PDEs (3D ok!)

A few additional properties of the 2D grid

Equidistribution in 1D: $\underbrace{x_{\xi}}_{\mathcal{J}} \omega = \operatorname{cst}$

Winslow in 2D: $\nabla(x_{\xi}) \cdot \nabla(y_{\eta}) - \nabla(x_{\eta}) \cdot \nabla(y_{\xi}) = 0 \Rightarrow \mathcal{J} \ \omega = \text{cst}$ (remember: $\mathcal{J} = x_{\xi}y_{\eta} - x_{\eta}y_{\xi}$)

* the transformation behind Winslow's method is *not* a harmonic mapping, but it is *related* to it

 \star a counterexample can be given for the 3D (harmonic) case, for which the transformation looses its regularity (Liao et al '94)

 \star several components in the proof of the 2D Theorem can *not* be applied in 3D either...

Overview 2D case tumourmodel resistive MHD 2D Euler 3D case Blow-up Conclusions

The monitor function ω

Arclength-type (AL-) monitor:

$$\omega = \sqrt{1 + \alpha \, \nabla u \cdot \nabla u}$$

 α is a (problem-dependent) 'adaptivity'-parameter which controls the amount of adaptivity.

BM-monitor (Beckett & Mackenzie \geq '01):

$$\omega = lpha(t) + ||
abla u||_2^{rac{1}{m}}, \quad ext{with} \quad lpha(t) = \iint_{\Omega_c} ||
abla u||_2^{rac{1}{m}} \, d\xi d\eta$$

m = 1: better scaling and more adaptivity than for m = 2

Overview 2D case tumourmodel resistive MHD 2D Euler 3D case Blow-up Conclusions

Smoothness of the BM monitor function

Define (Huang '02)
$$\bar{\omega} = 1 + \frac{\gamma ||\nabla u||_2}{(1-\gamma) \iint_{\Omega_c} ||\nabla u||_2 \ d\xi d\eta}$$
 with $\gamma \in [0,1)$

$$\Rightarrow \gamma = \frac{\iint_{\Omega_c} \bar{\omega} \ d\xi d\eta \ -1}{\iint_{\Omega_c} \bar{\omega} \ d\xi d\eta}$$

For $\gamma = \frac{1}{2}$, we have $\bar{\omega} = 1 + \frac{||\nabla u||_2}{\iint_{\Omega_c} ||\nabla u||_2 \ d\xi d\eta} \Rightarrow \approx 50\%$ of the grid points is concentrated in regions of high spatial derivatives, since

- $\iint_{\Omega_c} \bar{\omega} \ d\xi d\eta \sim$ the total # of grid points
- $\iint_{\Omega_c} \bar{\omega} \ d\xi d\eta 1 \sim$ the # of grid points in the steep layer

 \implies a smoother distributed grid than for the AL-monitor (with constant α) and $\alpha(t)$ is automatically computed!

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

 0
 000000000
 0000000000000
 000
 00000000000
 000

Smoothing of the AL-monitor function

Ir

With the BM-monitor, application of a filter or smoother to the grid or monitor values is not necessary.

Normally, smoother transitions in a general non-uniform grid can be obtained (and are needed!) by working with the smoothed value

$$S(\omega_{i+\frac{1}{2},j+\frac{1}{2}}) = \frac{1}{4}\omega_{i+\frac{1}{2},j+\frac{1}{2}} + \frac{1}{8}(\omega_{i+\frac{3}{2},j+\frac{1}{2}} + \omega_{i-\frac{1}{2},j+\frac{1}{2}} + \omega_{i+\frac{1}{2},j+\frac{3}{2}} + \omega_{i+\frac{1}{2},j-\frac{1}{2}}) + \frac{1}{16}(\omega_{i-\frac{1}{2},j-\frac{1}{2}} + \omega_{i-\frac{1}{2},j+\frac{3}{2}} + \omega_{i+\frac{3}{2},j-\frac{1}{2}} + \omega_{i+\frac{3}{2},j+\frac{3}{2}})$$

In the numerical experiments we denote this with *filter on* or *filter*

off (working merely with $\omega_{i+\frac{1}{2},j+\frac{1}{2}}$ values i.e. $S(\omega) = \omega$).

Application 1: a 2D tumour model [1]

M.A.J. Stuart & A.M. Stuart,

A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor,

IMA Journal of Mathematics, V10, 1993.

 $u_t = \epsilon_1 \Delta u - \nabla \cdot (u\kappa \nabla u) + \mu u (1 - u) \max\{0, v - v^*\} - \delta u$ $v_t = \epsilon_2 \Delta v - \lambda v - \frac{\phi uv}{\gamma + v}$

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

 0
 000000000
 000000000000
 0000000000000
 000
 00000000000
 00

Application 1: a 2D tumour model [2]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

Application 1: a 2D tumour model [3]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Application 2: resistive Magneto-HydroDynamics

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \mathbf{0}$$

$$rac{\partial(
ho \mathbf{v})}{\partial t} +
abla \cdot (
ho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B}) +
abla
ho_{tot} = 0$$

$$\left|\frac{\partial e}{\partial t} + \nabla \cdot (\mathbf{v}e + \mathbf{v}p_{tot} - \mathbf{B}\mathbf{B} \cdot \mathbf{v}) = \eta_m (\nabla \times \mathbf{B})^2\right|$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) = \eta_m \Delta \mathbf{B}$$

$$p_{tot} = p + \frac{\mathbf{B}^2}{2}, \ \ p = (\gamma - 1)(e - \rho \frac{\mathbf{v}^2}{2} - \frac{\mathbf{B}^2}{2})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Where can we find these models?

Kinematic flux expulsion in 2D [1]

$$\frac{\|\mathbf{B}\|^2}{8\pi\mu} \ll \frac{1}{2}\rho\|\mathbf{v}\|^2 \Rightarrow$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta_m \Delta \mathbf{B}$$

with
$$\nabla\cdot \boldsymbol{v}=0$$

$$\frac{\partial}{\partial z} = 0, \ \mathbf{B} = (B_1, B_2, 0), \ \nabla \cdot \mathbf{B} = 0 \Rightarrow$$

$$\frac{\partial B_1}{\partial t} = \eta_m \Delta B_1 + v_1 \frac{\partial B_2}{\partial y} - v_2 \frac{\partial B_1}{\partial y} + B_2 \frac{\partial v_1}{\partial y} - B_1 \frac{\partial v_2}{\partial y}$$

$$\frac{\partial B_2}{\partial t} = \eta_m \Delta B_2 - v_1 \frac{\partial B_2}{\partial x} + v_2 \frac{\partial B_1}{\partial x} - B_2 \frac{\partial v_1}{\partial x} + B_1 \frac{\partial v_2}{\partial x}$$

~ ~ ~ ~

Kinematic flux expulsion in 2D [2]

$$\mathbf{B} :=
abla imes \mathbf{A}$$
, where $\mathbf{A} :=$ vector potential \Rightarrow

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{v} \times (\nabla \times \mathbf{A}) - \eta_m \nabla \times (\nabla \times \mathbf{A})$$

$$B_3 = 0 \ (\Rightarrow A_1 = A_2 \equiv 0)$$
:

$$\frac{\partial A_3}{\partial t} = -v_1 \frac{\partial A_3}{\partial x} - v_2 \frac{\partial A_3}{\partial y} + \eta_m \Delta A_3$$

where $v_1(x, y)$ and $v_2(x, y)$ are given and satisfy

$$\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} = 0$$

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

 0
 000000000
 000000000000
 000000000000
 000
 00000000000
 000

Kinematic flux expulsion in 2D [3]

Four-cell convection (Weiss '66):

$$v_1(x, y) = \sin(2\pi x)\cos(2\pi y)$$

$$v_2(x, y) = -\cos(2\pi x)\sin(2\pi y)$$

$$0 < \eta_m \ll 1, \quad A_3|_{t=0} = 1 - x$$

 $A_3|_{x=0} = 1, A_3|_{x=1} = 0, A_3|_{y=0} = A_3|_{y=1}$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Global solution behaviour [1]

 $0 < \eta_m \ll 1 \Rightarrow$

write formal asymptotic expansion in η_m :

$$A_3(x,y,t) = \sum_{j=0}^{\infty} a_{3,j}(x,y,t) \eta_m^j$$

Substitute expansion into PDE and check first-order term (setting $\eta_m = 0$); this gives hyperbolic PDE:

$$\frac{\partial a_{3,0}}{\partial t} = -\mathbf{v} \cdot \nabla a_{3,0}$$

initial solution stays constant on sub-characteristics given by:

$$(\dot{x}, \dot{y})^T = \mathbf{v}$$

Global solution behaviour [2]

As $\nabla \cdot \mathbf{v} = 0$, the only *critical points* in ODE system are center points or saddle points (\rightsquigarrow 'field amplification').

At some point of time, the solution $a_{3,0}(x, y, t)$ can not satisfy the boundary conditions of the original PDE model: boundary (and internal) layers are formed of width $\mathcal{O}(\sqrt{\eta_m})$ (\rightsquigarrow 'magnetic flux concentrates at edges of convective cells').

For $t \to \infty$ the solution reaches a *non-trivial steady-state*, in which the diffusion and convection terms settle down to an *equilibrium*.

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

Global solution behaviour [3]

(日)

The numerical algorithm for the 2D case

- advection-diffusion-reaction PDE(s)
- decoupling of physical and grid PDEs
- grid PDEs: system of heat eq's with artificial time
- fixed time steps Δt
- Implicit-explicit time integration: 1-SBDF
- 'freezing' of non-linear terms in PDEs
- BiCGstab + diagonal preconditioning

Transformation of the PDE model [1]

$$\frac{\partial A_3}{\partial t} = -v_1 \frac{\partial A_3}{\partial x} - v_2 \frac{\partial A_3}{\partial y} + \eta_m \Delta A_3$$

$$\xi = \xi(x, y, t), \hspace{0.2cm} \eta = \eta(x, y, t), \hspace{0.2cm} \theta = t$$

Using the chain rule of differentiation:

$$A_{3,t} = A_{3,\theta}\theta_t + A_{3,\xi}\xi_t + A_{3,\eta}\eta_t.$$

We can also find that

$$\xi_t = -x_{ heta}\xi_x - y_{ heta}\xi_y = -rac{1}{\mathcal{J}}(x_{ heta}y_{\eta} - y_{ heta}x_{\eta})$$

Recall:

$$\mathcal{J}=x_{\xi}y_{\eta}-x_{\eta}y_{\xi}$$

Transformation of the PDE model [2]

Using a similar relation for η_t gives us

$$A_{3,t} = A_{3,\theta} + \frac{A_{3,\xi}}{\mathcal{J}}(x_{\eta}y_{\theta} - x_{\theta}y_{\eta}) + \frac{A_{3,\eta}}{\mathcal{J}}(x_{\theta}y_{\xi} - x_{\xi}y_{\theta}).$$

Since $\xi_x = \frac{y_{\eta}}{\mathcal{J}}, \xi_y = -\frac{x_{\eta}}{\mathcal{J}}, \eta_y = \frac{x_{\xi}}{\mathcal{J}}$ and $\eta_x = -\frac{y_{\xi}}{\mathcal{J}}$, we find for the first-order spatial derivative terms:

$$A_{3,x}=\frac{1}{\mathcal{J}}(A_{3,\xi}y_{\eta}-A_{3,\eta}y_{\xi})$$

and

$$A_{3,y}=\frac{1}{\mathcal{J}}(A_{3,\eta}x_{\xi}-A_{3,\xi}x_{\eta}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transformation of the PDE model [3]

PDE in computational coordinates becomes:

$$\mathcal{J}A_{3,\theta} + A_{3,\xi}(x_{\eta}y_{\theta} - x_{\theta}y_{\eta}) + A_{3,\eta}(x_{\theta}y_{\xi} - x_{\xi}y_{\theta})$$

$$= A_{3,\xi}(-v_1y_{\eta} + v_2x_{\eta}) + A_{3,\eta}(v_1y_{\xi} - v_2x_{\xi}) +$$

$$\eta_m[(\frac{x_{\eta}^2+y_{\eta}^2}{\mathcal{J}}A_{3,\xi})_{\xi}-(\frac{x_{\xi}x_{\eta}+y_{\xi}y_{\eta}}{\mathcal{J}}A_{3,\eta})_{\xi}-$$

$$(\frac{x_{\xi}x_{\eta}+y_{\xi}y_{\eta}}{\mathcal{J}}A_{3,\xi})_{\eta}+(\frac{x_{\xi}^{2}+y_{\xi}^{2}}{\mathcal{J}}A_{3,\eta})_{\eta}]$$

$$\mathcal{J}=x_{\xi}y_{\eta}-x_{\eta}y_{\xi}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Numerical results; four-cell convection [1]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Numerical results; four-cell convection [2]

Numerical results; four-cell convection [3]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Application 3: the 2D Euler equations

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho uv \\ u(E+p) \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^{2} + p \\ v(E+p) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $\rho : \text{density} \\ (\rho u, \rho v)^T : \text{momentum vector} \\ E : \text{total energy} \\ p : \text{pressure} = (\gamma - 1)(E - \rho \frac{u^2 + v^2}{2}) \\ \text{Write hyperbolic PDE system as:}$

$$\frac{\partial Q}{\partial t} + \frac{\partial \mathcal{F}_1(Q)}{\partial x} + \frac{\partial \mathcal{F}_2(Q)}{\partial y} = \mathcal{G}(x, y, Q)$$

Overview 2D case tumourmodel resistive MHD 2D Euler 3D case Blow-up Conclusions

A typical non-uniform finite volume cell $A_{i+\frac{1}{2},j+\frac{1}{2}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discretization of the grid PDEs

* Given a non-uniform partitioning $\{A_{i+\frac{1}{2},j+\frac{1}{2}}\}_{i,j}$ of Ω_p , where $A_{i+\frac{1}{2},j+\frac{1}{2}}$ is a quadrangle with four vertices $\mathbf{x}_{i+k,j+l}$, $0 \le k, l \le 1$ (denote numerical approximations to $\mathbf{x} = \mathbf{x}(\xi, \eta)$ by $\mathbf{x}_{i,j} = \mathbf{x}(\xi_i, \eta_i)$)

* Subdivide $\Omega_c = \{(\xi, \eta) | \ 0 \le \xi \le 1, \ 0 \le \eta \le 1\}$ uniformly: $(\xi_i, \eta_j) | \ \xi_i = i\Delta\xi, \ \eta_j = j\Delta\eta; \ 0 \le i \le l_{\xi} + 1, \ 0 \le j \le l_{\eta} + 1$

 \star Discretize the elliptic system of grid PDEs by second-order central finite differences

 \star Apply a Gauß-Seidel iteration method to the resulting system of algebraic equations

< □ > < 同 > < E > < E > E < のQ @</p>

A conservative solution-updating method

Having computed the new grid, the solution values Q have to be updated on this grid by interpolation
(Tang et al '03 use a conservative interpolation method)

Simple linear interpolation is not good enough

Denote with x_{i,j} & x̃_{i,j} the coordinates of old and new grid points (x_{i,j} moves to x̃_{i,j} after Gauß-Seidel iterations)
Using a perturbation technique and assuming small grid speeds, then the following mass-conservation is satisfied:

$$\sum_{i,j} |\tilde{A}_{i+\frac{1}{2},j+\frac{1}{2}}| \ \tilde{\mathcal{Q}}_{i+\frac{1}{2},j+\frac{1}{2}} = \sum_{i,j} |A_{i+\frac{1}{2},j+\frac{1}{2}}| \ \mathcal{Q}_{i+\frac{1}{2},j+\frac{1}{2}}$$

where |A| is the area of cell A

Finite volume discretization on non-uniform grids [1]

$$\frac{\partial Q}{\partial t} + \frac{\partial \mathcal{F}_1(Q)}{\partial x} + \frac{\partial \mathcal{F}_2(Q)}{\partial y} = \mathcal{G}(x, y, Q)$$

Integration over the finite control volume $A_{i+\frac{1}{2}j+\frac{1}{2}}$:

$$\frac{\partial}{\partial t} \iint_{A_{i+\frac{1}{2},j+\frac{1}{2}}} \mathcal{Q} \, dxdy + \sum_{l=1}^{4} \int_{s_l} \mathbf{F}_{\mathbf{n}^{l}}(\mathcal{Q})|_{(x,y)\in s_l} \, ds = \iint_{A_{i+\frac{1}{2},j+\frac{1}{2}}} \mathcal{G} \, dxdy$$

with $\mathbf{F}_{\mathbf{n}'}(\mathcal{Q}) = \mathcal{F}_1 n'_x + \mathcal{F}_2 n'_y$ and $\mathbf{F}_{\mathbf{n}'} = \mathbf{F}_{\mathbf{n}'}^+ + \mathbf{F}_{\mathbf{n}'}^-$

Discretization \Rightarrow

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

Finite volume discretization on non-uniform grids [2]

$$\mathcal{Q}_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1} = \mathcal{Q}_{i+\frac{1}{2},j+\frac{1}{2}}^{n} - \frac{\Delta t}{|A_{i+\frac{1}{2},j+\frac{1}{2}}|} \Big\{ \mathcal{F}_{\mathbf{n}^{1}}^{-} (\mathcal{Q}_{i+\frac{1}{2},j-\frac{1}{2}}^{n}) + \mathcal{F}_{\mathbf{n}^{2}}^{-} (\mathcal{Q}_{i+\frac{3}{2},j+\frac{1}{2}}^{n}) \\ + \mathcal{F}_{-2}^{-} (\mathcal{Q}_{i-1,j-3}^{n}) + \mathcal{F}_{-2}^{-} (\mathcal{Q}_{i-1,j-1}^{n}) + \sum_{i=1}^{4} \mathcal{F}_{-1}^{+} (\mathcal{Q}_{i-1,j-1}^{n}) \Big\} + \Delta t \mathcal{G}_{i-1,j-1}^{n} \Big\}$$

$$+\mathcal{F}_{\mathbf{n}^{3}}^{-}(\mathcal{Q}_{i+\frac{1}{2},j+\frac{3}{2}}^{n})+\mathcal{F}_{\mathbf{n}^{4}}^{-}(\mathcal{Q}_{i-\frac{1}{2},j+\frac{1}{2}}^{n})+\sum_{l=1}\mathcal{F}_{\mathbf{n}^{l}}^{+}(\mathcal{Q}_{i+\frac{1}{2},j+\frac{1}{2}}^{n})\right\}+\Delta t \mathcal{G}_{i+\frac{1}{2},j+\frac{1}{2}}^{n}$$

The time step size Δt is determined every time step by

$$\Delta t = rac{\min(\Delta x, \Delta y) \ CFL}{\max |\lambda|},$$

where λ are the eigenvalues of the Jacobian matrix $\frac{\partial \mathbf{F}}{\partial Q}$

Decoupling of the grids and physical PDEs

resistive MHD

tumourmodel

Overview

Step 1 Partition Ω_c uniformly; give initial partitioning of Ω_p ; compute initial grid values by a cell average of control volume $A_{i+\frac{1}{2},j+\frac{1}{2}}$ based on initial data Q(x, y, 0). In a loop over the time steps, update grid and solution and evaluate the PDE:

2D Fuler

- Step 2a Move grid $\mathbf{x}_{i,j}$ to $\tilde{\mathbf{x}}_{i,j}$ by solving the discretized grid PDEs using Gauß-Seidel iterations.
- Step 2b Compute $\tilde{Q}_{i+\frac{1}{2},j+\frac{1}{2}}$ based on conservative interpolation. Repeat *step 2a* and *step 2b* for a fixed number of Gauß-Seidel iterations.
 - Step 3 Evaluate the physical PDEs by the finite volume method on the grid $\tilde{\mathbf{x}}_{i,j}$ to obtain $\mathcal{Q}_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1}$ at t^{n+1} .

Step 4 Repeat steps 2a, 2b and 3 until t = Tend is reached.

Conclusions

Blow-up

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

2D Riemann problem: shock waves

The first test example is a two-dimensional Riemann problem (config. 4 in Lax & Liu '98) and has the following initial data:

$$(\rho, u, v, p)_{t=0} = \begin{cases} (1.1, 0.0, 0.0, 1.1) & \text{if } x > 0.5, \ y > 0.5, \\ (0.5065, 0.8939, 0.0, 0.35) & \text{if } x < 0.5, \ y > 0.5, \\ (1.1, 0.8939, 0.8939, 1.1) & \text{if } x < 0.5, \ y < 0.5, \\ (0.5065, 0.0, 0.8939, 0.35) & \text{if } x > 0.5, \ y < 0.5. \end{cases}$$

They correspond to a left forward shock, right backward shock, upper backward shock and a lower forward shock, resp. The spatial domain Ω_p is $[0, 1] \times [0, 1]$ and $T_{end} = 0.25$.

view 2D case tumourmodel resistive MHD 2D Euler 3D case Blow-up Conclusions

Comparison: AL vs. BM-monitor vs. uniform grid

RUN #	monitor	α	m	filter	runtime
I	AL-monitor	0.01	-	on	0 ^h 15 ^m
II	AL-monitor	0.1	-	on	0 ^h 47 ^m
III	AL-monitor	2.0	-	on	2 ^h 31 ^m
IV	AL-monitor	10.0	-	on	5 ^h 48 ^m
V	AL-monitor	2.0	-	off	3 ^h 04 ^m
VI	BM-monitor	-	2	off	0 <i>h</i> 57 ^m
VII	BM-monitor	-	1	off	1 ^{<i>h</i>} 09 ^{<i>m</i>}
VIII	uniform (400×400)	-	-	-	1 ^{<i>h</i>} 05 ^{<i>m</i>}
IX	uniform (600 $ imes$ 600)	-	-	-	3 ^h 50 ^m

Table: A shock wave model (configuration 4 from Lax & Liu '98)

・ロト・日本・モン・モン・モー うへの

Overview 2D case tumourmodel resistive MHD 2D Euler 3D case Blow-up Conclusions

Numerical results for the AL-monitor

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = の < ⊙

Numerical results for the BM-monitor

left: uniform grid 400² and 600², middle: m = 2, right: m = 1

Overview2D casetumourmodelresistive MHD2D Euler3D caseBlow-upConclusionsooooooooo

The adaptive grid: a close-up near (0.92, 0.15)

left: AL-monitor ($\alpha = 2$ & filter off); middle: AL-monitor ($\alpha = 2$ & filter on); right: BM-monitor with m = 1 (no filter needed)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Rayleigh-Taylor instability model

* This instability happens on an interface between fluids with different densities when an acceleration is directed from the heavy fluid to the light fluid

 \star It has a fingering nature, with bubbles of light fluid rising into the ambient heavy fluid and spikes of heavy fluid falling into the light fluid

* Here we have non-homogeneous BCs and an extra source term in the PDE-system: $\mathcal{G} = (0, 0, \rho g, \rho v g)^T$, where g is the acceleration due to gravity

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Fuller
 3D case
 Blow-up
 Conclusions

 0
 000000000
 000000000000
 000000000000
 000
 00000000000
 00

Numerical results for Rayleigh-Taylor instability [1]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Extension of Winslow to 3D

Minimization of grid-energy yields in 3D:

$$\begin{aligned} \nabla \cdot (\omega \nabla x) &= 0 \\ \nabla \cdot (\omega \nabla y) &= 0 \\ \nabla \cdot (\omega \nabla z) &= 0, \quad (x, y, z)^T \in [0, 1]^3 \end{aligned}$$

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

with

$$\omega = \alpha(t) + ||\nabla u||_2, \ \alpha(t) = \int \int \int_{\Omega_c} ||\nabla u||_2 \ d\xi d\eta d\zeta$$

Non-singular transformation? Theory?

Extension of Winslow to 3D

Minimization of grid-energy yields in 3D:

$$\begin{aligned} \nabla \cdot (\omega \nabla x) &= \frac{\partial x}{\partial \tau} \\ \nabla \cdot (\omega \nabla y) &= \frac{\partial y}{\partial \tau} \\ \nabla \cdot (\omega \nabla z) &= \frac{\partial z}{\partial \tau}, \quad (x, y, z)^T \in [0, 1]^3 \end{aligned}$$

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

with

$$\omega = lpha(t) + ||
abla u||_2, \ lpha(t) = \int \int \int_{\Omega_c} ||
abla u||_2 \ d\xi d\eta d\zeta$$

Non-singular transformation? Theory?

Transformation of 'a blow-up PDE'

The PDE
$$\frac{\partial u}{\partial t} = \Delta u + u^p$$

transforms via $(x, y, z, t) \rightarrow (\xi, \eta, \zeta, \theta)$; with $t = \theta$ to:
 $u_{\theta} + \frac{1}{\mathcal{T}} [u_{\xi}(-x_{\theta}(y_{\eta}z_{\zeta} - y_{\zeta}z_{\eta}) - y_{\theta}(x_{\zeta}z_{\eta} - x_{\eta}z_{\zeta}) - z_{\theta}(x_{\eta}y_{\zeta} - x_{\zeta}y_{\eta})) + u_{\eta}(-x_{\theta}(y_{\zeta}z_{\xi} - y_{\xi}z_{\zeta})) - y_{\theta}(x_{\xi}z_{\zeta} - x_{\zeta}z_{\xi}) - z_{\theta}(x_{\zeta}y_{\xi} - x_{\xi}y_{\zeta})) + u_{\zeta}(-x_{\theta}(y_{\xi}z_{\eta} - y_{\eta}z_{\xi}) - y_{\theta}(x_{\eta}z_{\xi} - x_{\xi}z_{\eta}) - z_{\theta}(x_{\xi}y_{\eta} - x_{\eta}y_{\xi}))] = \frac{1}{\mathcal{T}} [\left(\frac{(y_{\eta}z_{\zeta} - y_{\zeta}z_{\eta})^{2} + (x_{\zeta}z_{\eta} - x_{\eta}z_{\zeta})^{2} + (x_{\eta}y_{\zeta} - x_{\zeta}y_{\eta})^{2}}{\mathcal{T}}u_{\xi}\right)_{\xi} + \left(\frac{(y_{\eta}z_{\zeta} - y_{\zeta}z_{\eta})(y_{\zeta}z_{\xi} - y_{\xi}z_{\zeta}) + (x_{\zeta}z_{\eta} - x_{\eta}z_{\zeta})(x_{\xi}z_{\zeta} - x_{\zeta}z_{\xi}) + (x_{\eta}y_{\zeta} - x_{\zeta}y_{\eta})(x_{\zeta}y_{\xi} - x_{\xi}y_{\zeta})}{\mathcal{T}}u_{\zeta}\right)_{\xi} + \frac{(y_{\eta}z_{\zeta} - y_{\zeta}z_{\eta})(y_{\xi}z_{\eta} - y_{\eta}z_{\xi}) + (x_{\zeta}z_{\eta} - x_{\eta}z_{\zeta})(x_{\eta}z_{\xi} - x_{\xi}z_{\eta}) + (x_{\eta}y_{\zeta} - x_{\zeta}y_{\eta})(x_{\xi}y_{\eta} - x_{\eta}y_{\xi})}{\mathcal{T}}u_{\zeta}\right)_{\xi} + \frac{(y_{\eta}z_{\zeta} - y_{\zeta}z_{\eta})(y_{\xi}z_{\eta} - y_{\eta}z_{\xi}) + (x_{\xi}z_{\eta} - x_{\eta}z_{\zeta})(x_{\eta}z_{\xi} - x_{\xi}z_{\eta}) + (x_{\xi}y_{\xi} - x_{\xi}y_{\zeta})(x_{\eta}y_{\zeta} - x_{\zeta}y_{\eta})}{\mathcal{T}}u_{\xi}\right)_{\eta} + \dots$

with $\mathcal{J} = z_{\zeta}(x_{\xi}y_{\eta} - x_{\eta}y_{\xi}) - z_{\eta}(x_{\xi}y_{\zeta} - x_{\zeta}y_{\xi}) + z_{\xi}(x_{\eta}y_{\zeta} - x_{\zeta}y_{\eta})$

Blow-up models (intro) [1]

Application areas:

- Combustion models & chemical reaction dynamics
- Population dynamics: motion of colonies of micro-organisms
- Plasma physics: wave motion in fluids and electromagnetic fields

Blow-up models (intro) [2]

Consider the ODE:

$$\begin{cases} \dot{u} = u^{p}, \ p > \\ u(0) = u_{0} \end{cases}$$

Exact solution:

$$u(t) = \frac{1}{[(p-1)(T-t)]^{p-1}}, \ T = \frac{1}{u_0^{p-1}(p-1)}$$

Blow-up models (intro) [3]

Consider the PDE:

$$\{ egin{array}{l} rac{\partial u}{\partial t} = \Delta u + u^p, \ p > 1 \ u|_{\partial\Omega} = 0, u(x,0) = u_0(x) \end{array}$$

Kaplan 1963: if u_0 smooth and large enough, then the solution u is regular for every $0 \le t < T$, but

$$\lim_{t\to T} ||u(\cdot,t)||_{\mathcal{L}^{\infty}} = +\infty$$

・ロット (四)・ (田)・ (日)・

Blow-up models (intro) [4]

Another PDE example:

$$\begin{array}{l} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - u + u^p, \ x \in (0,\pi), \ t > 0\\ \{ \ u(x,0) = u_0(x) \ge 0, \ x \in (0,\pi), \\ u(0,t) = u(\pi,t) = 0, \ t > 0 \end{array}$$

• Let $f = \int_0^{\pi} u(x, t) \sin(x) dx$, then $\dot{f} = \int_0^{\pi} (\frac{\partial^2 u}{\partial x^2} - u^p) \sin(x) dx - f$ Via Hölder's inequality: $\dot{f} \ge -2f + \frac{f^p}{2^{p-1}}$

- If $f(0) > 2^{\frac{p}{p-1}}$, then $f(t) \to \infty$ in finite time By Cauchy-Schwartz: $f \le ||u||_{\mathcal{L}^2(0,\pi)} ||\sin(x)||_{\mathcal{L}^2(0,\pi)}$
- Thus $f \to \infty$ implies $||u||_{\mathcal{L}^2(0,\pi)} \to \infty$ $\Rightarrow u$ leaves $\mathcal{L}^2(0,\pi)$ in finite time

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

Adaptive time steps with a Sundman transformation [1]

Explicit Euler with fixed
$$\Delta t$$
 for $\{ egin{array}{c} \dot{u} = u^p \ u(0) = 1 \end{array} \}$

$$u^{n+1} = u^n + \Delta t \ (u^n)^p \quad \Rightarrow$$

Numerical solution exists for all $t^n = n\Delta t$ (i.e. <u>no</u> blow up...)

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

Adaptive time steps with a Sundman transformation [2]

Explicit Euler + central FD's for $u_t = u_{xx} + u^p$:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t^n} = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{(\Delta x)^2} + (u_j^n)^p$$

with $\Delta t^n = \frac{\Delta \theta}{||u^n||_{\infty}^{p-1}}$ and constant $\Delta \theta$ (~ a Sundman *time* transformation $t(\theta) = \frac{\theta}{||u||_{\infty}^{p-1}}$)

 \Rightarrow for sufficiently small Δx (+ stab. restriction on Δt^n), the numerical solution blows up at $T_{\Delta x}$ and $\lim_{\Delta x \to 0} T_{\Delta x} = T$ (Abia et al, 2001)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

 Overview
 2D case
 tumourmodel
 resistive MHD
 2D Euler
 3D case
 Blow-up
 Conclusions

Adaptive time steps with a Sundman transformation [3]

In terms of scaling invariance and self-similarity:

Consider the ODE $\dot{u} = u^2$, i.e. p = 2, then using a fictive computational time variable θ gives rise to a new ODE system with

$$\begin{array}{c}
\frac{du}{d\theta} = u \\
\frac{dt}{d\theta} = \frac{1}{u}
\end{array}$$

that is *invariant* under the scaling $t \to \lambda t$, $u \to \lambda^{-1}u$ and for which the numerical solution u^n uniformly approximates the true *self-similar* solution $u(t) = -\frac{1}{t}$ of the original ODE for $\Delta \theta \to 0$. (Budd, Piggott, Leimkuhler et al)

The numerical algorithm in 3D

- decoupling of blow-up and grid PDEs
- grid PDEs: system of heat equations with artificial time
- \bullet central finite differences on non-uniform grid for Δ
- 'freezing' of non-linear terms in PDEs in each time step
- \bullet implicit Euler for Δ and explicit for reaction term
- BiCGstab + ILU-preconditioning for underlying linear systems

• variable Δt using Sundman-transformation

Blow-up in 3D [1]

Case 1:

Maximum value of u as a function of time t.

Blow-up in 3D [2]

Case 1 (cntd.):

Adaptive grids and numerical solutions at two points of time just before blow-up (note the scale of the solution in each of the plots)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Blow-up in 3D [3]

Case 2:

$u(x, y, z, 0) = 10 \sin(\pi x) \sin(\pi y) \sin(\pi z)$ (p = 3, $11^3/21^3/41^3$ grid; with or without Sundman $t(\theta)$)

Maximum value of u as a function of time t. (blow-up time in our experiments $\sim T$ from Liang & Lin, 2005: ≈ 0.007249)

Blow-up in 3D [4]

Case 2 (cntd.):

Adaptive grid and numerical solution just before blow-up (right plot: close-up of grid and solution)

・ロト ・西ト ・ヨト ・ヨー うらぐ

Summary of Part 1-4

- 1D adaptive moving grids: a lot of theory is available with <u>many</u> applications!!
- 2D on "simple" domains: some theory, but several applications!
- the 3D case: theory is difficult and only a few applications yet: in development.

Final remarks

- ALL adaptive moving grid methods (*r*-refinement), when restricted to 1 space dimension, are related to:
- * either: method of characteristics (velocity based grids)

- * or: equidistribution principle (location based grids)
- \star or: a combination of the above two!